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The solution of the cubic equation has a century-long history; however, the usual presentation is
geared towards applications in algebra and is somewhat inconvenient to use in optimization where
frequently the main interest lies in real roots. In this paper, we first present the roots of the cubic
in a form that makes them convenient to use and we also focus on information on the location of the
real roots. Armed with this, we provide several applications in convex analysis and optimization
where we compute Fenchel conjugates, proximal mappings and projections.
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1. Introduction

The history of solving cubic equations is rich and centuries old; see, e.g., Con-
falonieri’s recent book [11] on Cardano’s work. Cubics do also appear in convex
and nonconvex optimization. However, treatises on solving the cubic often focus on
the general complex case making the results less useful to optimizers. More pre-
cisely, entering a symbolic cubic into SageMath [21] or WolframAlpha [22] yields
long unwieldy formulas where one root is real when the coefficients are all real and
the others look nonreal due to the presence of v/—1. However, these packages' give
little insight about exactly which roots are actually real and how the real roots relate
to each other in terms of the ordering of the real line.

The purpose of this paper is two-fold. We present a largely self-contained derivation
of the solution of the cubic with an emphasis on usefulness to practitioners by iden-
tifying the real roots and pointing out their ordering. We do not claim novelty of

!The same comment likely applies to commercial packages such as Mathematica and Maple. In
this paper, we do not require that the reader has access to costly commercial software.
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these results; however, the presentation appears to be particularly convenient. We
then turn to novel results in convex analysis (see Rockafellar’s seminal book [20] for
background material). We show how the formulas can be used to compute Fenchel
conjugates and proximal mappings of some convex functions. We also discuss pro-
jections on convex and nonconvex sets. There is an obvious need and broad appeal
for these results; in fact, a preprint of this paper was already cited by engineers in
their work on power spectral density estimation (see [15, Appendix A]) and also by
physicists in their work on two-qubit states [23, Appendix E]. Recently, the real root
characterizations of cubic polynomials have also been used to describe the geometry
of the function space represented by a linear convolutional network in deep learning
[14] and to establish bounds in federated learning [13].

The paper is organized as follows. In Section 2, we collect some facts on polynomials.
Section 3 contains a self-contained treatment of the depressed cubic; in turn, this
leads quickly to counterparts for the general cubic in Section 4. Section 5 concerns
convex quartics — we compute their Fenchel conjugates and proximal mappings. In
Section 6, we present a formula for the proximal mapping of the convex reciprocal
function. An explicit formula for the projection onto the epigraph of a parabola
is provided in Section 7. In Section 8, we derive a formula for the projection of
certain points onto a rectangular hyperbolic paraboloid. In Section 9, we revisit the
proximal mapping of the closure of a perspective function. Finally, the appendices
contain the proofs of the results we presented.

2. Some facts on polynomials

We now collect some properties of polynomials that are well known; as a reference,
we recommend [19].

Fact 2.1. Let f(x) be a nonconstant complex polynomial and let r € C such that
f(r) = 0. Then the multiplicity of v is is the smallest integer k such that the kth
derivative at r is nonzero: f*Y(r) =0 and f®(r) #0. Whenk =1, 2, or 3, then
we say that v is a simple, double, or triple root, respectively.

Fact 2.2. (Vieta) Suppose f(x) = ax®+ bx? + cx + d is a cubic polynomial (i.e.,
a # 0) with complex coefficients. If r1,r9,73 denote the (possibly repeated and
complex) roots of f, then

(1a)

(1b)

(1c)

Conversely, if ri,r, 73 in C satisfy (1), then they are the (possibly repeated) roots
of f.

Fact 2.3. Suppose f(x) = ax®+bx*+cx+d is a cubic polynomial (i.e., a # 0) with
real coefficients. Then f has three (possibly complex) roots (counting multiplicity).
More precisely, exactly one of the following holds:

7”1+T’2+T3:—
T1T9 + T3 + rorg =

r1rors = —

Ll ol

(i) f has ezactly one real root which either is simple (and the two remaining roots
are nonreal simple roots and conjugate to each other) or is a triple root.
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(ii)  f has ezactly two distinct real roots: one is simple and the other double.

(iii) f has ezactly three distinct simple real roots.

Remark 2.4. We mention that the roots of a polynomial of a fixed degree depend
continuously on the coefficients — see [19, Theorem 1.3.1] for a precise statement and
also the other results in [19, Section 1.3].

3. The depressed cubic

In this section, we study the depressed cubic

g(2) := 2> +pz+q where p€ R and ¢ €R. (2)

For the reader’s convenience, we relegate the proofs to the appendix.
Theorem 3.1. Because
g'(2) =32"+p and ¢"(z) = 62, (3)
we see that 0 is the only inflection point of g: g is strictly concave on R_ and g s
strictly convex on R, .
Moreover, exactly one of the following cases occurs:
(i) p<0: Set zy := ++/—p/3. Then z_ < zy, zy are two distinct simple roots
of ¢, g is strictly increasing on |—oo, z_], g is strictly decreasing on [z_, z4],
g is strictly increasing on [z, +oo[. Moreover,

g(=-)g(z) =48, where A = (p/3)° + (q/2)% (4)

and this case trifurcates further as follows:
(a) A >0: Then g has exactly one real root r. It is simple and given by

ro=u_+uy, where uy = {/ —7(1 + VA, (5)

The two remaining simple nonreal roots are
3 4 us) £i3VB(u — ), (©)

(b) A =0: If g >0 (resp. ¢ <0), then 2z_ (resp. 2z ) is a simple real root
while z, (resp. z_) is a double root. Moreover, these cases can be combined

into?
% = Qﬁ is a simple root of g and
" : (7)
qu =3 7(] is a double root of g.

(¢) A <0: Then g has three simple real roots r_, ro, 4 satisfying the relations
ro<z_.<ryg<zy<ry. Indeed, set

0 := arccos (;7?{)23/2, (8)

2 Observe that this is the case when A — 07 in (i)(a)
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which lies in |0, 7], and then define zy, z1, 2o by
2 = 2(—p/3)Y? cos (%) 9)
Then r_ =z, 1o = 22, and ry = 2p.
(i) p=0: Then ¢’ has a double root at 0, and g is strictly increasing on R. The
only real root is
= (-0 (10
If ¢ = 0, then r is a triple root. If ¢ # 0, then r is a simple root and the
remaining nonreal simple roots are —%T + i%\/gr.

(iii) p > 0: Then ¢" has no real root, g is strictly increasing on R, and g has ezxactly
one real root r. It is simple and given by

ri=u_ +uy, where ug = { %q + VA and A= (p/3)* + (¢/2)%. (11)

Once again, the two remaining simple nonreal roots are
—Llu +uy) £i3VB(u — uy). (12)
Proof. See Appendix A. [

We now provide a concise version of Theorem 3.1:

Corollary 3.2. (Trichotomy) Set A := (p/3)3 + (q/2)?. Then ezactly one of the
following holds:

(i) p=0o0orA>0: Then g has exactly one real root and it is given by

i”/_Qqu\/ZJri’/;q—\/Z. (13)

(i) p <0 and A =0: Then g has exactly two real roots which are given by

3¢ _93/—4 —3¢ _ _3/—4
?—2 5 and o 5 (14)

(iii) A < 0: Then g has exactly three real Toots zg, z1, z2 which are given by

o 1/2 0 + 2km L 7(]/2
2 = 2(—p/3)"* cos <73 >, where 6 := arccos /3 (15)

and where z1 < z9 < zp.

As an illustration, we present an example that follows immediately from Corollary
3.2 (with —¢ = p > 0 and thus A > 0):

Example 3.3. Suppose that p > 0. Then
2 +pz—p (16)

has exactly one real root which is given by

OO B TR
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Remark 3.4. Example 3.3 is immediately useful to derive an explicit formula of a
Bregman proximal mapping whose existence was announced in [7, Proposition 5.1] in
the paper by Bolte, Sabach, Teboulle, and Vaisbourd (see also [12, Proposition 2.§]
in the paper by Godeme, Fadili, Buet, Zerrad, Lequime, and Amra).

4. The general cubic
In this section, we turn to the general cubic

f(z) :=az® +br* +cx +d, where a,b,c,darein R and a > 0. (18)
(The case a < 0 is treated similarly.) Note that f”(z) = 6az + 2b has exactly one

zero, namely )

Ty = g (19)
The change of variables r=z+ (20)
leads to the well known depressed cubic
.3 __ 3ac—b? _27a%d + 2b% — 9abc
g(z) := 2z + pz+¢q, where p:= 3 and ¢ := 573 (21)

which we reviewed in Section 3. Here ag(z) = f(x) = f(z 4 o) so the roots of g are
precisely those of f, translated by z:

x is a root of f < x — x( is a root of g. (22)

So all we need to do is find the roots of g, and then add x( to them, to obtain the
roots of f. Because the change of variables (20) is linear, multiplicity of the roots
are preserved. Translating some of the results from Theorem 3.1 for g to f gives the
following:

Theorem 4.1. f is strictly concave on |—00, x| and is strictly convezr on [xq, +00],
where xq is the unique inflection point of f defined in (19). Recall the definitions of
p,q from (21) and also set

s (Bac—0*)?  (27a*d + 20 — 9abe)?

A= (p/3)° +(q/2) (9a2)3 + (54a3)?

(23)

Then exactly one of the following cases occurs:

(i) [0 >3acep<0|: Set xy := (—b =+ Vb2 —3ac)/(3a). Then x4 are two

distinct simple roots of f', f is strictly increasing on |—oo,x_], f is strictly
decreasing on [x_,xy], [ is strictly increasing on [z, +oo[. This case trifur-
cates further as follows:

(a) .' Then f has exactly one real root; moreover, it is simple and
given by

To+u_ +uy, where uy = ¢ %q +VA. (24)

The two remaining simple nonreal roots are

o — 3(u- +uy) £izvV3(u- —uy).
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(b) : Then f has two distinct real roots: The simple root is

3q 3/—q _ 4abc — b3 — 9a%d
To + P o +2 \/ 2 a(b® - 3ac) (25)

and the double root is

_ﬁ_ Y 9ad — be
o = %o 2 2(b2 —3ac)’ (26)

(c) : Then f has three simple real roots r_,rg,ro satisfying the rela-
tions r— < x_ <rg<xy <ry. Indeed, set

6 := arccos (_;/q?{;m, (27)

which lies in |0, 7], and then define yo,y1,y2 by

(28)

2
Y = 20 + 2(—p/3)"? cos (L +3 kﬁ).

Then r_ =1yi, 7o = Yo, and 7y = Y.

(i) [b* =3ac < p=0|: Then fis strictly increasing on R and its only real root is
ri= 1o+ (=)' (29)

If ¢ = 0, then r is a triple root. If ¢ # 0, then r is a simple root and the

remaining nonreal simple roots are xo — %(—q)l/?’ + i%\/g(—q)l/?’.

(iii) [b® < 3ac << p > 0|: Then f is strictly increasing on R, and f has exactly one
real root; moreover, it is simple and given by

To+u_ +uy, where uy = ,3/ %q + VA, (30)

The two remaining simple nonreal roots are xo— 3(u_ +uy) £i2v/3(u_ —uy).

Remark 4.2. Of course, descriptions for the roots of the cubic are well known; see,
e.g., [1, Section 3.8.2]. However, none of the works we are aware of provides an
easy-to-use description of the roots and their ordering when real.

Considering the case when a = 1, b = —a, ¢ = 0, and d = —~, followed by some
simplifications, we obtain the following:

Example 4.3. Let a > 0 and v > 0. Then
22— a2t~y (31)
has exactly one real root which is given by

a3a3’y+\/5 iﬂ/a37—\@ 9 4 3
3+\/<3>+ 5 T <§>—|— TR where §:=7~ +ﬁa7>0. (32)

Remark 4.4. Example 4.3 appears in work by Ahookhosh, Hien, Gillis, and Pa-
trinos on Bregman proximal alternating linearized minimization; see [2, Proof of
Theorem 5.2].
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In turn, Corollary 3.2 turns into

Corollary 4.5. Recall (19) and (21), and set

ac — b2)3 a2 3 — 9abc)?
A= (pf3)" + (/2" = B o Bl fd (33)

Then exactly one of the following holds:

(1) ’bQ = 3ac or A >0 ‘ : Then f has exactly one real root and it is given by

Wv—;w&v—;_m (34)

(ii) ’b2 > 3ac and A =0 ‘ : Then f has exactly two real roots which are given by

3 [— -3 -
x0+;q:$0—|—237q andx0+2—pq:x0—37q. (35)
(iii) : Then f has exactly three real (simple) roots ro, 11,72, where
L . 1/2 9+2k‘71’) L —q/2
T = xo + 2(—p/3)"* cos <7 , 0 :=arccos = (36)

and 1 < ry < 19.

5. Convex analysis of the general quartic
In this section, we study the function
h(z) := az* + Bz® + y2® + dx +¢, where a, 8,7, 6, are in R with o # 0. (37)
We start by characterizing convexity.
Proposition 5.1. (Convexity) The general quartic (37) is convex if and only if
a>0 and Say > 35% (38)
Proof. See Appendix B.1. [

We shall now assume the above characterization of convexity for the remainder of

this section:
h is convex, i.e., o > 0 and 8avy > 343°. (39)

We now turn to the the computation of the Fenchel conjugate (see [20, Section 12]).

Proposition 5.2. (Fenchel conjugate) Recall our assumptions (37) and (39). Let

y € R. Then .
h*(y) = yx, — h(z,), (40)

where p = (8ay — 35%)/(16a*) > 0, q := (8a*(d — y) + 8° — 4afBv)/(32a3),
A= (p/3)*+(q/2)* > 0, and

S Y ' 3/°9 _
vt Y VB - VA (1)

Proof. See Appendix B.2. ]
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Next, we compute the proximal mapping (see [18] and also [20, Section 31]).

Proposition 5.3. (Proximal mapping) Recall our assumptions (37) and (39). Let

y € R. Then
Proxh(y)=—£+§/2q+ﬂ+§/;—ﬂ, (42)
where b= 4a(1 Jrlzzl — 332 = 8a2(6 —y) +35230; 2a8(1 + 2v) , (43)
and A= (p/3)*+ (q/2)? > 0.
Proof. See Appendix B.3. O
Example 5.4. Suppose that
h(z) =2+ 2° + 2° + 2 + 1, (44)
and let y € R. Then h is convex and
h*(y) = yx, — h(z,), where (45a)
%z—j+;v —2+¢@—§V+@P+;vy—§—¢@—§V+@P.@%)
Moreover, Proxy(y)

;+;vy—§+¢@—§w+@w+;jy—g—¢@—QV+QP. (1)

See Figure 1 for a visualization.

Proof. See Appendix B.4. ]
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Figure 1: A visualization of Example 5.4. Depicted are h (left), its conjugate h*
(middle), and the proximal mapping Prox;, (right).

Example 5.5. Suppose that

h(z) = axz*, where a > 0, (47)
* - 3 4/3
and let y € R. Then h*(y) = TEPSIEL (48)

13y 1+ 27ay? 13y 1+ 27ay?
and Proxh(y)—2\/a+\/27ag+2\/a—\/27a3. (49)
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Proof. See Appendix B.5. O

Remark 5.6. The Fenchel conjugate formula (48) is known and can also be com-
puted by combining, e.g., [3, Example 13.2(i) with Proposition 13.23(i)]. The prox
formula (49) appears — with a typo though — in [3, Example 24.38(v)]. Finally, for
a Maple® implementation for quartics, see Lucet’s [17] and also the related papers
[8] and [16] by Borwein and Hamilton and by Lauster, Luke, and Tam, respectively.
6. The proximal mapping of a/z
In this section, we study the convex reciprocal function
if x > 0;
h(x) := o/, 1 T where a > 0. (50)
+o0, ifx <0,

The Fenchel conjugate h*, which requires only solving a quadratic equation, is es-
sentially known (e.g., combine [3, Example 13.2(ii) and Proposition 13.23(i)]), and

given by
. —2v/—ay, ify <O0;
h(y) = : (51)
~+00, if y > 0.

The aim of this section is to explicitly compute Prox;,. The result is Proposition 6.1.

20 [ .
15}
10}

(—1.88988,0.62996) |

Proxy,
S

Y ) T NI ERRENN AU S A AR AR S
-20 -15 -10 -5 0 5 10 15 20

Figure 2: A visualization of Proposition 6.1 when o = 1.

Proposition 6.1. Suppose that h is given by (50), and let y € R. Now set
Yo = —3/a/4 ~ —1.88988/cv. Then we have the following three possibilities:

() Ifyo <y, then

pots = 4+ 3+ oo () 30 o ()

yo) = a4 ~ 0.62996/ .

(
(iii) If y < yo, then Prox,(y) = %(1 — 2cos (% arccos W))

(ii) Ify = yo, then Proxy

3Unfortunately, the commercial software Maple is not freely available.
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Proof. See Appendix C. O

Remark 6.2. Suppose that a=1. Then Prox;, was discussed in [9]; however, no ex-
plicit formulae were presented. For a visualization of Proxy in this case, see Figure 2.

7. Projection onto the epigraph of a parabola

In this section, we study the projection onto the epigraph of the function

h: R" — R: x + a|/x||?>, where a > 0. (52)

Theorem 7.1. Set E :=epih C R"™. Let (y,n) € (R* x R). If (y,n) € E, then
Pr(y,n) = (y,n). So we assume that (y,n) € (R" x R) \ E, i.e., a|y|]* > n. Set

v ||y|| = (204’17 _ ]_)2 (2@77 - 1)3 — 27a?V?

P="""pa » 97 10803 ’ (53)

A= (p/3)* + (¢/2)* = (27a*V? — 2(2an — 1)*)v?/(1728a*), and

_antl {’/_q/2+\/Z+ i’/—Q/2—\/Z7 ifaz0;

3a
T = (54)
_an+1 | |2an—1| (1 —q/2 > .
3 + 35— cos | 5 arccos o3) if A <0.
Then Pg(y,n) = (1 +y2a$,77 + .CE) (55)

See Figure 3 on the next page for an illustration for the case o = 1/2.

Proof. See Appendix D. [

8. On the projection of a rectangular hyperbolic paraboloid

In this section, X is a real Hilbert space and we set

S:={(x,y,7) € X x X xR | (x,y) =ay}, where a € R~ {0}. (56)

Using the Hilbert product space norm ||(x,y,7)| := v/IIx/|? + lyl|? + 8272, where
B > 0, we are interested in finding the projection onto S. Various cases were
discussed in [4], but 3 were treated only implicitly. Armed with the cubic, we are
now able to treat two of these cases explicitly (the remaining case features a quintic
and remains hard). The first case concerns

Ps(z,—2z,7), when z € X \ {0} and a(y — a/f?) < —||z||*/4, (57)
while the second case is

Ps(z,2,7), when z € X ~ {0} and a(y + o/B%) > |z|?*/4. (58)
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20

10

-10

-20
=20 -10 0 10 20

Figure 3: A visualization of Theorem 7.1 when n = 1 and « = 1/2. The epigraph is
shown in gray. The V-shaped curve corresponds to A = 0, the dark gray region to
A < 0 (where trig functions are used) and the light gray region to A > 0.

8.1. The case when (57) holds

Theorem 8.1. Suppose z € X ~ {0}, set ¢ := ||z]| >0, (59)
and assume that aly —a/B?) < =4 (60)
__(a+p*y)? _ 2(a+ %)% | B2
Set PiE e F T = (61)
,_ 3 o _ B (B¢ | (a+ )’
and A= (/37 + (a2 = S5 (T + 92200, (62)
If A>0, then set x:z%—l—i/%q—l—\/z—l-:\)’/%q—\/z; (63)

and if A <0, then set
_ 20— s2a+py) 1 —q/2
Ti= e ) o 08 (§ ((3 + §)m + arccos W)) (64a)
where § :=sign(a® + af®y) € {-1,0,1}. (64b)
VA —Z axr
Then —1<x <1 and Ps(z,—z,7) = (m, 0T ﬁ) (65)

Proof. See Appendix E.1. O
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8.2. The case when (58) holds
Theorem 8.2. Suppose z € X \ {0}, set

= |lz[| >0, (66)
and assume that aly+a/p%) > ¢?/4. (67)
Set o= _(ﬁzgo;a)27 g 2(52277;30&)3 - B;EQ’ (68)
and A= /3 + (/2 = S5 (G - ), (69)
[FA>0, then set  z:= —2° ;f \/ +VA + \/ — VA, (70)

and if A < 0, then set

92 2 9 _ R2 —q/2
I a+ 5y 5 (a 35 ) oS ( <(2 + 28)7 + arccos a/ )) (71a)

3o (=p/3)%/?
where § :=sign(a® — af?y) € {-1,0,1}. (71b)
Then —1<x <1 and Ps(z,2,7) = (1—1—%’ 1—1—%’7 + %) (72)
Proof. See Appendix E.2. O

9. A proximal mapping of a closure of a perspective function

The following completes [3, Example 24.57] which stopped short of providing solu-
tions for the cubic encountered there. For more on perspective functions, we refer
the reader to Combettes’s paper [10].

Example 9.1. Define the function h on R” x R by
lyl?/(2n), if n > 0;
h(y,n) = 0, if y=0 and n = 0; (73)
400, otherwise.

Let v > 0 and (y,n) € R" x R. Then

(0,0), if [ly[|* + 2yn < 0;

P = ’
r0XA4 (Y, 1) ((1 ||7)\|) n+ ﬂ>, if ||y||? + 2yn > 0,

where p=2(n+7)/v, A= (p/3)*+ (||lyll/7)? and

3 IIyH VA 4 30 ||y|| if A > 0;
(75)

(—p/3)1/2 cos § AICCOS ¢ “y)g/)g/2>, if A <0.

(74)

Proof. See Appendix F. ]
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Appendices

A. Proof of Theorem 3.1

Except for the formulas for the roots, all statements on g follow from calculus. For
completeness, we include the proofs.

(i)(a): Because A > 0 and g is strictly decreasing on [z_, z,], it follows from (4)
that g has the same sign on [z_, z; ] and so g has no root in that interval. Now g is
strictly increasing on |—o0, z_| and on [z, 400]; hence, g has exactly one real root
r and it lies outside [z_, z]. Note that r must be simple because the roots of ¢’ are
zz and 7 # zz. Note that u_ < uy. Next, v’ u? = (¢/2)* — A = —(p/3) and so

u_uy = —p/3. (76)
Also, u?i+u§r:_7q—\/z+%q+\/_:—q. (77)

Hence g(r) = 4+ pr+q
= (- +uy)’ +plu_+uy)+q
=’ +ul +3u_ug(um +up) +plu +uy) +q
= (v’ +ul) + Bu_uy +p)(u_ 4+ uy) + ¢

=—q+ (3(-p/3) +p)(u +us) +¢ (using (76) and (77))
=0
as claimed. Observe that we only need the properties (76) and (77) about u_, u, to

conclude that u_ + u, is a root of g. This observation leads us quickly to the two
remaining complex roots: First, denote the primitive 3rd root of unity by w, i.e.,

w = exp(2mi/3) = cos(27/3) +isin(27/3) = -1 + 1%\/5 (78)
Then w? =& = —1 —i3V3 and w® =&* = 1. Now set
v_ = wu_ and vy = wiu, = Dug.
Then v_vy(wu_) = (w?uy) = wu_uy = u_uy = —p/3 by (76), and v + 03 =
(wu_)? + (w?uy)?® = wu? + whud =4 +ud = —¢ by (76). Hence

V_ + Uy = WU_ + Wiy
= (-1 +ilV3)u_ + (-1 —ilV3)u,
= —3(u_ +uy) +i3V3(u- —uy)
and its conjugate are the remaining simple complex roots of g.

(i)(b): From (4), it follows that z_ or z, is a root of g. In view of Fact 2.1 and
g'(2-) = ¢'(=1), it follows that one of z_, z, is at least a double root, but not both;
moreover, it cannot be a triple root because 0 is the only root of ¢” and z_ < 0 < z,.
Hence exactly one of z_, z, is a double root. To verify the remaining parts, we first
define

_3q

-3
ry = = and 7y := 4
p

2p
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Because A = 0, it follows that 4p3 + 27¢* = 0. Hence

27 3 27¢3
g(rl)—rl—irprl—irq—p—q—k%—l—q pq +4q—]%(27q2+4p3)20

and

—27¢° -3 —27¢°
g(re) =13 +pro+q= 83? —l——pq—l—q 8p3q —%:%(27q +4p°) = 0.

The assumption that A = 0 readily yields

_31/3q2/3 2(—p)3/2
Hence ro=3gp = 3q(_1)3—1/3q—2/322/3 — 22/3(_q)1/3
and ro=—3¢27'p~t = —3¢27(=1)37 /3¢ /3223 = 9713 (— )1/
as claimed. If ¢ > 0, then
3¢ 3-2(—p)3/?
== = 2y =2
e 130 1 1y

and 7“2—%— 2 571 = 222,—z+

Similarly, if ¢ < 0, then ry = 22z, and ro = 2z_.

No matter the sign of ¢, we have ry € {z_, 2z} and thus ¢'(r2) = 0, i.e., r9 is the
double root.

(i)(c): In view of (4), g(z—) and ¢(z,) have opposite signs. Because ¢ is strictly
decreasing on [z_, z], it follows that g(z_) > 0 > ¢g(z,). Hence there is at least on
real root ry in Jz_, z;[. On the other hand, g is strictly increasing on |—o0, z_] and
on [z4, +oo[ which yields further roots r_ and r, as announced. Having now three
real roots, they must all be simple.

Next, note that
A<0e0<(q/2)? < —(p/3)° = (—p/3)> < 0 < (¢/2)*/(—p/3)?
& 0<(lg1/2)/(=p/3)** <1 & -1 < (—q/2)/(-p/3)** < 1.

It follows that 6 = arccos (_;%)23/2 €10, 7] (79)

as claimed. For convenience, we set, for k € {0,1,2},

0+ 2k
3 )

Oy, := hence, z, = 2(—p/3)"? cos(6y,). (80)

Recall that 0 < 6 < 7, which allows us to draw three conclusions:
0<60y=0/3<m/3=1>cos(by) =cos(0/3)>1/2; (81a)
21/3 < by = (0+27)/3 <7 = —1/2 > cos(#;) = cos((A+2m)/3) > —1;  (81b)
A /3 < Oy = (0+4m)/3 < b /3 = —1/2 < cos(bs) = cos((0+27)/3) < 1/2. (81c)
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Hence cos(f;) < cos(fs) < cos(fp) and thus
21 < 29 < Zp. (82)

All we need to do is to verify that each z; is actually a root of ¢g. To this end,
observe first that the triple-angle formula for the cosine (see, e.g., [1, Formula 4.3.28
on p. 72]) yields

COSS(Qk) _ 3 cos() Icos(39k) _ 3cos(fx) + ZOS(G + 2km) (83a)
_ 3cos(bk) + cos(8)
_ : . (83b)

Then
9(zk) = 2 + 2+ q
= 8(—p/3)3/2 cos®(01,) + p2(—p/3)"2 cos(6y) + g
—p/3)*/(3 cos(6k) + cos(6)) + 2(—p/3)"*pcos(6x) + ¢ (using (83))
—p/3)"% cos(6x) (3(~=p/3) +p) +2(=p/3)** cos(6) + g
—p/3)** cos(0) + ¢
/Y (using (79))

and this completes the proof for this case.

(ii): If ¢ = 0, then g(z) = 2% so z = 0 is the only root of g and it is of multiplicity
3. Thus we assume that ¢ # 0. Then

9(2)=0 & 22 4¢=0 & *=—¢ = 2= (—¢)'?#0.
Because ¢ is strictly increasing on R, 7 := (—¢)'/3 is the only real root of g. Because
¢' has only one real root, namely 0, it follows that ¢'(r) # 0 and so r is a simple
root. Denoting again by w the primitive 3rd root of unity (see (78)), it is clear that
the remaining complex (simple) roots are wr and wr as claimed.

(iii): Note that A > (p/3)® > 0 because p > 0. The fact that r is a root is shown
exactly as in (i)(a). It is simple because ¢’ has no real roots, and r is unique because
g is strictly increasing. The complex roots are derived exactly as in (i)(a).

This concludes the proof.

B. Proofs for Section 5
B.1. Proof of Proposition 5.1
Note that h/(z) = 4az® + 382% + 2yx + § and, also completing the square,

2
R'(z) = 1202 4 68z + 2y = Z (41. n 6) +oy ?fa (84)
(38). (For further information on

Hence i > 0 < [a > 0 and 2y > 36%/(40)] &
[6, Section 3.1.3].) This concludes the

deciding nonnegativity of polynomials, see
proof.
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B.2. Proof of Proposition 5.2

Because h is supercoercive, it follows from [3, Proposition 14.15] that dom h* = R.
Combining with the differentiability of h, it follows that y € int dom A* C dom Oh* =
ran Oh = ran h’/. However, if h'(z) = y, then h*(y) = xy — h(z) and we have found
the conjugate. It remains to solve h/(z) =y, i.e.,

4ax® +3B2% + 2y + 5 —y = 0. (85)
So we set

f(z):=az® +br* +cx +d, where a:=4a, b:=38, c:=2y, d:=§—y.
To solve (85), i.e., f(x) = 0, we first note that

_ 3ac—b*  3(4a)(2v) — (38)* _ 8ay —383?
P= 3z~ 3(4a)? - 1602 2 0,

where the inequality follows from (39). Next,

_ 3%a?d 420 —3%abe _ 342a2(5 — y) +2(3°8°) — 32(40)(36)(27)

(3a)3 - 334303
_8a%(6 —y) + 2 — dafy
B 32a3
and A= (p/3)° +(q/2)* > 0,

where the inequality follows because p > 0. Then —b/(3a) = —f/(4a) and now
Corollary 4.5(i) yields the unique solution of f(z) = 0 as (41). This concludes the
proof.

B.3. Proof of Proposition 5.3

Because h is differentiable and full domain, it follows that Proxy(y) is the unique
solution x of the equation h'(x) + z —y = 0. The proof thus proceeds analogously
to that of Proposition 5.2 — the only difference is we must solve

f(z):=az® +b2x® +cx +d, where a:=4a, b:=33, c:=2v+1, d:=0—vy.

(The only difference is that ¢ = 2y + 1 rather than 2+ due to the additional term
“427.) Thus we know a priori that the resulting cubic must have a unique real
solution. We now have
1 1 8ay—3B82  4da(l+2y) - 352
v A T 1602 =P
__ 3ac— b?
- 3a?

~ 120(1 + 2y) — 952
o 4802

which is our usual p from discussing roots of the cubic f. Similarly, the ¢ defined here
is the same as the usual ¢ for f(z) (see (21)). Finally, the formula for x = Prox;,(y)
now follows from Corollary 4.5(i). This concludes the proof.

B.4. Proof of Example 5.4

Note that h fits the pattern of (37) with o = 8 = =6 = ¢ = 1. The characteriza-
tion of convexity presented in Proposition 5.1 turns into 1 > 0 and 8 > 3 which are
both obviously true. Hence h is convex.



H. H. Bauschke et al. / Real Roots of Real Cubics ... 17

To compute the Fenchel conjugate, we apply Proposition 5.2 and get p = 5/16,
q=(5—-8y)/32 = —(y —5/8)/4, and A = 5%/16% + (y — 5/8)?/8%. Tt follows
—q/2 = (y —5/8)/8. Hence (41) turns into

_ 1 3/y—5/8 (y—5/8)?* | 5  3/y—5/8 (y—5/8)°  5°
:ch_—4+\/ 8 Jr\/ g tieT s T

_ L 3ly—5/8 (y—5/8?*  5° 3/y—5/8 (y—5/8?% 5°
__71+\/ g T e TeasT 8 2 e

which simplifies to (45a).

To compute Proxy(y), we utilize Proposition 5.3. Obtaining fresh values for p, q, A,
we have this time

p=9/16, ¢ = (3 —8y)/32, A = ((8y — 3)% + 27)/4096 = ((Sy — 3)> + 3%)/642.
Hence —q/2 = (8y — 3)/64 and VA = \/(8y — 3)2 + 33/64. It follows that

Sl evVA = \/8?/ 34 vy z’ ik 1{’/8y—3i\/(8y—3)2+33
\/y—3i¢<y—§>2+<j>3.

This, —(/(4a) = —1/4, and (42) now yields (46). This concludes the proof.

l\JM—l

B.5. Proof of Example 5.5

Note that A fits the pattern of (37) with 5 =+ =0 = ¢ = 0. The characterization
of convexity presented in Proposition 5.1 turns into o > 0 and 0 > 0 which are both
obviously true. Hence h is convex.

We start by computing the Fenchel conjugate of h using Proposition 5.2. We have
p=0,q=—y/(4a), A = (y/(8a))?, and —B/(4a) = 0. Hence —g/2 = y/(8a) and
VA = |y|/(8a) which imply

U(~a/2) £ VA = /y/(3a) £ [y]/a) = {/max{0,y/(Aa)} or {/min{0, y/(4a)]}.

Using (41), we get
= Vmax{0,y/(4a)} + ¥/min{0,y/(4a)} = V/y/(4a).

Using Proposition 5.2, we obtain

h(y) = yz, — h(zy) = yy'?/(40)"/* — ay*? /(40)*/?
ly[*/3 I 3[y[*/3

= A1/351/3 44/30,1/3 - 41/3041/3( - Z) = —4(4a)1/3

as claimed.
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To compute Proxy(y), we utilize Proposition 5.3. Obtain fresh values of p, g, A, we
have this time p = 1/(4a) > 0 and ¢ = —y/(4a) (see (43)). Hence

A= (p/3)>+ (q/2)* = (1 + 2Tay?)/(1728a3) and VA = /1+ 27ay? /(8(3a)3/2).
Now —3/(4ar) = 0 and —¢q/2 = y/(8«), so (42) yields

Proxh(y) _ \/ 4 \/ 1 + 27ay? \/8a 1 + 27ay

3/2 8 3a 3/2

E 14 270> 1 1+ 270>
a C 2703 2 C 2703

and this concludes the proof.

l\J\H

C. Proof of Proposition 6.1

Because we have domh = R, ., we must find the positive solution of the equation
h'(x)+ 2z —y = 0. Since I/(z) = —az ™2, we are looking for the (necessarily unique)
positive solution of z?(h/(z) +x —y) = 0, i.e., of

3 —yx® —a=0.

This fits the pattern of (18) in Section 4, with parameters a = 1, b = —y, ¢ = 0,
and d = —a. As in (21), we set

_p2 2 <0, if 0;
p::w:_%{zo, ifzio (86)
and _ 27a%d —&—2?22 — 9abc — 0 — 2(y/3)3.
Next, A= (p/3)" + (a/2)" = —y"/9° + (o + 2(y/3)*)* /4
—(y/3)° + /4 + aly/3)* + (y/3)°
=a(a/4+ (y/3)°).

<0<y <yo;
Hence A =0<&y=yp; where y := —%\3/5 ~ —1.88988+/a. (87)

>0 <y > o,
Now set Ty = —3% = % (88)
Note that —q/2=(y/3)* + a/2. (89)

We now discuss the three possibilities from Corollary 4.5 — these will correspond to
the three items of the result!

Case 1: b* = 3ac or A > 0; equivalently, y = 0 or y > yo; equivalently, yo < 7.
Then Corollary 4.5(i) yields, as claimed,

Proxa(y) = o + V;w& g/; VA

@ ) 5 @) el ()
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Case 2: A = 0; equivalently, y = yo.
Then Corollary 4.5(ii) yields two distinct real roots. We can take a short cut here,
though: By exploiting the continuity of Prox;, at yo via Prox; (yo) = limy%yér Proxy(y),

we get
3
Proxu(y) = % + 24/ 5 + (%0) = {a/V ~ 0.62996 Ya.

Case 3: A < 0; equivalently, y < yo.

By uniqueness of Prox;(y), the desired root must be the largest (and the only posi-
tive) real root offered in this case (see Corollary 4.5(iii)):

Prox,(y) = o + 2(—p/3)"? cos (§>’ where 6 := arccos (;%)23/2’ (90)
By (86), —p/3 = %2/9; thus, using y < yo < 0, we obtain (—p/3)"/? = —y/3,
(—p/3)*? = —(y/3), and (89) yields —(q/2)/(=p/3)** = —((y/3)* + /2)/(y/3)".
This and (88) results in

Prox,(y) = % - 2% cos (g), where 6 := arccos (— W) (91)

The proof is complete.

D. Proof of Theorem 7.1

For # > 0, we have zh = za| - ||, zVh = 2az1d, I[d+2Vh = (1 + 2ax)Id and
therefore Prox,;, = (1 + 2az) ' Id. In view of [5, Theorem 6.36], we must first find
a positive root = of p(x) := h(Prox,,(y)) —x —n = ally||*/(1 + 2ax)* — 2 —n = 0.
Note that ¢(0) > 0, that ¢ is strictly decreasing on R, , and that ¢(x) — —o0 as
xr — +oo. Hence ¢ has exactly one positive root. Multiplying by (1 + 2ax)? > 0,
where z > 0, results in the cubic av? — (z + n)(1 4+ 2az)? = 0, which must have
exactly one positive root. Re-arranging, we are led to

f(z) =402 + 4a(an + 1)2? + (4dan + Do +n — av® =0, (92)

a cubic which we know has exactly one positive root. As in Section 4, we set

a:=4a* b:=4dalan+1), c:=4an+1, d:=n—a’ <0, (93)
__ 3ac — b (2am — 1)?
p = 3(12 = - 120[2 S 07 (94)
_27a%d + 2% — 9abe  8an? — 12an? + 6an — 27a%V? — 1
and 7= 27a3 N 108a? ' (95)
We then have, as claimed,
8a’n? — 12a2n? 4 6an — 270212 — 1 2 2an —1)8
A= (p/3) + (a2 = ¢ ) (96)
2
=— 17;80/1 (16a°n® — 240’n* 4 12am — 27a°V* — 2) (96b)
1/2
= Tronod (27a°1* — 2(2an — 1)%),. (96¢)
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Utilizing Corollary 4.5, we have

p= ML 3 L VAL Y —q2— VA, iA>0  (97a)

3
and +1 |2am—1] 1 /2
__aq an — 1 —q .
T = g cos (3 arccos (_p/3)3/2> if A <0. (97b)

(Because we know there is ezactly one positive root, it is clear that we must pick rq
in Corollary 4.5(iii) when A < 0.) Finally, [5, Theorem 6.36] yields

Pg(y,n) = (Proxa(y),n + =) = (1 ot w) (98)

as claimed.

E. Proofs for Section 8
E.1. Proof of Theorem 8.1
By [4, Theorem 4.1(ii)(a)], there exists a unique x € |—1, 1] such that

2¢2 202
(1 —Cx)Z + ZQ;E +2ay = 0; (99)

multiplying by 82(1 — z)?/2 > 0 yields the cubic
fx)=ar® +br* +cx+d=0 (100)
where
a:=0>>0, b:=af*y—2a% c:=ao®—2a8%, d:=abB*y+ B (101)

Our strategy is to systematically discuss all cases of Theorem 4.1 and then combine
cases as much as possible. As usual, we set

9 9 2 2 24)2
b _2a-fy_207-afy g p.=Bact S C R lap (102)

o . — — .
0 3a 3o 3a2 3a2 302 -7

and we note that the definition of p is consistent with the one given in (61). We
have the characterization

p=0& a+y=0 & v=—a/f% (103)
Again as usual, we set

_27a%d + 2% —9abe  2(a+ B%y)2 | B2
4-= 27a’ ST (104)

which matches (61), and of course

A= (/3 + (a2 = D5 (55 + P, (105)

o? 402 27a3

which matches (62).
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We now systematically discuss the case of Theorem 4.1.

Case 1: p <0, i.e., a+ %y # 0 by (61).

Case 1(a): p <0 and A > 0.

Then Theorem 4.1(i)(a) and the definition zq in (102) yield (63).

Case 1(b): p<0and A =0.

By Theorem 4.1(i)(b), there are two roots, xo+ 3¢/p and xy — 3q/(2p), one of which
lies in |—1,1[. Now

3¢ 1= 2a — B2y 3 2(a + B27)3 +27aB%¢? —3a? 1
=5, T T T 2 270’ (o + B27)2
_ 20— %y + (a+ B%9)° +27aB%C?/2 1
o 3 3a(a + f27)?
(2a = B8%9) + (@ + %) = (3a)) 27aB%¢? /2

— 2.\2
N 3a(a + f29)? (a4 55)"+

__we
R

3a(a + £27)?

hence the root xy — 3¢/(2p) lies in [1,+oo[ and therefore our desired root is the
remaining one, namely zo + 3¢/p, which also allows us to use the representation
(63).

Case 1(c): p<0and A <0.

According to Theorem 4.1(i)(c), we have three distinct real roots, but there is infor-
mation about their location. We must locate the root in |—1,1[. First, b* — 3ac =
(a? + af8%y)? which yields v/b? — 3ac = |a® + af%y|. This and the definition of b
yields

~b+ Vb2 —3ac _ 2a% —af?y =+ |+ af?y|

T 3a 3a?
1 (3a%) + (o —2a8%y) £(302) — (a? = 208%7)|
32 2 '
: 2 2 2 2 2 2
Hence = min{3a?, a® — 2a6%v} < max{3a?, a® — 2a58%v} —z,. (106)

3a? 3a2
We now bifurcate one last time.
Case 1(c)(+): p <0, A <0, and a® + a8y > 0.

Then 3a? > o? — 2a3%y and therefore z, = 1. Tt follows that our desired root x is
the “middle root” corresponding to k = 2 in Theorem 4.1(i)(c):

v =+ 2(—=p/3)'/* cos ( 3 (47 +arccos (—;/q?{)z?’/2>>

_ 20— %y | 2o+ B2 (1< —q/2 >>
= o + 3ol Cos 3 47r+arccosW

_ 2a-p%y | 2(a+ 5% (}( —q/2 ))
== + o cos | 3 471 4 arccos 37) )

where in the last line we used the assumption to deduce that

o+ 829/ |al = [0 + af*y|/a* = (a® + af*y)/a® = (a + 27) /o
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Case 1(c)(—): p< 0, A <0, and a* + aff?*y < 0.
Then 302 < o? — 2a/3%y and therefore x_ = 1. It follows that our desired root is
the “smallest root” corresponding to k = 1 in Theorem 4.1(i)(c):

z = x0+2(—p/3)"? cos (% <27r + arccos i))

(—p/3)72
_ 2a - %y 2la + %] 1 —q/2
= - + 30 Cos <§ (27T + arccos (_p/3)3/2>>
_ 20— 2(a+p?y) (1( —q/2 >>
i 3 cos ( 3 27 4+ arccos 3e))

where in the last line we used the assumption to deduce that

o+ B%9]/lel = [o® + af*y]/a? = —(a® + af*y) /a* = —(a + 7y) /o
Note that the last two cases can be combined to obtain (64).
Case 2: p =0, i.e., a+ %y =0 by (61).

Then A = (g/2)? > 0; hence, VA = |¢|/2 and thus {—¢/2 + VA} = {—¢,0}. By
Theorem 4.1(ii), the only real root is

2o+ (=) = zo + (—q/2 + VA3 + (—q/2 — VA3
which is the same as (63) using (102).

Case 3: p > 0. In view of (61), this case never occurs and we are done.

E.2. Proof of Theorem 8.2
By [4, Theorem 4.1(iii)(a)], there exists a unique = € |—1, 1] such that

2¢2 _ 202z
(1+2)2 32

—2ay =0; (107)

multiplying by —£%(1 + x)?/2 < 0 yields the cubic
f(z) :=az® +b2x® + cx +d =0, where (108)
a:=0a?>0, b:=afy+2% c:=a*+2ap%, d:=afy— B> (109)

Our strategy is to systematically discuss all cases of Theorem 4.1 and then combine
cases as much as possible. As usual, we set
2 2 2 _ K2 20, )2
b __2a+ﬂ7:_2a +afy and pi— 3ac—b :_(ﬂ7 «) <0, (110)

To = —o = :
0 3a 3a 32 3a? 3a2

and we note that the definition of p is consistent with the one given in (68). We
have the characterization

p=0& Fy—a=0 & y=a/p% (111)

Again as usual, we set

2 2 _ 2, _ )3 2,2
g = 27a*d + 2b° — 9abe _ 2(8°y — )" B¢ (112)

27a3 2703 a?’
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which matches (68), and of course

A= (p/3) + (a2 = TS (B4 - Ty (113)

a? \ 4a? 2703
which matches (69).

We now systematically discuss the case of Theorem 4.1.
Case 1: p <0, i.e., 3%y —a # 0 by (68).

Case 1(a): p<0and A > 0.
Then Theorem 4.1(i)(a) and the definition of =y in (110) yield (70).

Case 1(b): p<0and A =0.

By Theorem 4.1(i)(b), there are two roots, xo +3¢/p and zo — 3¢/(2p), one of which
lies in |—1,1[. Now

34 2+ 3 2(527 — a)3 —27aB?(?  _342

e e @ —ap T
__2a+8%y | (By—a)’ —2705°C?)2
o 3a + 3a(f%y — a)? 1
_ (=20 = B*) + (8*y — a) + (30)) (8 — a)? — 2T00°C/2
o 3a(B2y — a)? 3a(B2y — a)?
s |
= 5y —ap =

hence the root xy — 3¢/(2p) lies in |—o00, —1] and therefore our desired root is the
remaining one, namely zo + 3¢/p, which also allows us to use the representation

(70).
Case 1(c): p<0and A <0.

According to Theorem 4.1(i)(c), we have three distinct real roots, but there is infor-
mation about their location. We must locate the root in |—1,1[. First, b* — 3ac =
(a? — af?y)? which yields v0? — 3ac = |a? — af*y|. This and the definition of b
yields

= bE VB2 —3ac  —2a% — afPy £ |a? — aB?

3a 3a?
1 (=30 + (—a® ~ 208%) £ |(~302)  (—a® — 2a5%)]
302 2 ’
min{—3a?, —a? — 2a3%y} _ max{-3a? —a? — 20832y}
Hence r_ = 37 < 37 =T4. (114)

We now bifurcate one last time.

Case 1(c)(+): p< 0, A <0, and o? — aff*y > 0.
Then —3a? < —a? — 2a3%y and therefore z_ = —1. It follows that our desired root
x is the “middle root” corresponding to k = 2 in Theorem 4.1(i)(c):
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v = g +2(~p/3)" cos (47 + arceos —15-))

_ 2a+p%y | 2Py —qf (}( —q/2 ))
— - + ol CoSs 3 47 4+ arccos 7(_1)/3)3/2

_ 204y | 2(a—F%y) (}( —q/2 ))
= I + o cos | 3 471 + arccos 32))

where in the last line we used the assumption to deduce that
8%y = al/la] = lap*y — a?|/a® = (a® — af?y)/a® = (a — B7y) /o

Case 1(c)(—): p< 0, A <0, and a® — af?*y <0.
Then —3a? > —a? — 2a/3%y and therefore z, = —1. It follows that our desired root
is the “largest root” corresponding to k£ = 0 in Theorem 4.1(i)(c):

z = x9+ 2(—p/3)"/* cos (%(WCOS (_;/qg{;»/z))

_ 20+ 8%y | 2|8%y —qf (}( —q/2 ))
= . —|— 3|a| COS 3 arccos 7(_1)/3)3/2

_ 2048y | 28— o) 1 —q/2
= + 3a CcOos <§<arccos (_p/3)3/2)>,

where in the last line we used the assumption to deduce that

182 — al/|a] = oy — a?|/a® = (af?y — a2)/a® = (B2 — a)/a.
Note that the last two cases can be combined to obtain (71a).
Case 2: p=0, i.e., a — 3*y =0 by (68).

Then A = (g/2)? > 0; hence, VA = |¢|/2 and thus {—¢/2 + VA} = {—¢,0}. By
Theorem 4.1(ii), the only real root is

w0+ (—q)'* = w0 + (—=q/2+ VAP 4 (—q/2 = VA
which is the same as (70) using (110).

Case 3: p > 0. In view of (68), this case never occurs and we are done.

F. Proof of Example 9.1

The first cases were already provided in Example 24.57 of [3].

Now assume ||y||* + 2yn > 0. It was also observed in this Example 24.57 that if
y = 0, we then have Prox,;(y,n) = (0,n).

So assume also that y # 0. It follows from the discussion that in [3, Example 24.57]
that A is the unique positive solution of the already depressed cubic

)\3 + 2(77"‘7))\ . 2|ly|l =0, (115)
Y v
which is where the discussion in [3] halted. Continuing here, we set
p = 72(77‘#7)7 q:= _ 2l 0, (116)

v Y
and A := (p/3)3 + (¢/2)°.
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Using Corollary 3.2, we see that if A < 0, then

A =2(—p/3)"? cos (é arccos i) (117)

while if A > 0, then

=S VE - va (18)

which slightly simplifies to the expression provided in (75).

Finally, notice that if y = 0, then the assumption that [|y||* + 2yn > 0 yields n > 0;
thus, p > 0, ¢ = 0, and hence A > 0. Formally, our A then simplifies to 0 which
conveniently allows us to combine this case with the case y # 0. The proof is
complete.
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