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The solution of the cubic equation has a century-long history; however, the usual presentation is
geared towards applications in algebra and is somewhat inconvenient to use in optimization where
frequently the main interest lies in real roots. In this paper, we first present the roots of the cubic
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where we compute Fenchel conjugates, proximal mappings and projections.
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1. Introduction

The history of solving cubic equations is rich and centuries old; see, e.g., Con-
falonieri’s recent book [11] on Cardano’s work. Cubics do also appear in convex
and nonconvex optimization. However, treatises on solving the cubic often focus on
the general complex case making the results less useful to optimizers. More pre-
cisely, entering a symbolic cubic into SageMath [21] or WolframAlpha [22] yields
long unwieldy formulas where one root is real when the coefficients are all real and
the others look nonreal due to the presence of

√
−1. However, these packages1 give

little insight about exactly which roots are actually real and how the real roots relate
to each other in terms of the ordering of the real line.
The purpose of this paper is two-fold. We present a largely self-contained derivation
of the solution of the cubic with an emphasis on usefulness to practitioners by iden-
tifying the real roots and pointing out their ordering. We do not claim novelty of
1The same comment likely applies to commercial packages such as Mathematica and Maple. In
this paper, we do not require that the reader has access to costly commercial software.
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these results; however, the presentation appears to be particularly convenient. We
then turn to novel results in convex analysis (see Rockafellar’s seminal book [20] for
background material). We show how the formulas can be used to compute Fenchel
conjugates and proximal mappings of some convex functions. We also discuss pro-
jections on convex and nonconvex sets. There is an obvious need and broad appeal
for these results; in fact, a preprint of this paper was already cited by engineers in
their work on power spectral density estimation (see [15, Appendix A]) and also by
physicists in their work on two-qubit states [23, Appendix E]. Recently, the real root
characterizations of cubic polynomials have also been used to describe the geometry
of the function space represented by a linear convolutional network in deep learning
[14] and to establish bounds in federated learning [13].
The paper is organized as follows. In Section 2, we collect some facts on polynomials.
Section 3 contains a self-contained treatment of the depressed cubic; in turn, this
leads quickly to counterparts for the general cubic in Section 4. Section 5 concerns
convex quartics – we compute their Fenchel conjugates and proximal mappings. In
Section 6, we present a formula for the proximal mapping of the convex reciprocal
function. An explicit formula for the projection onto the epigraph of a parabola
is provided in Section 7. In Section 8, we derive a formula for the projection of
certain points onto a rectangular hyperbolic paraboloid. In Section 9, we revisit the
proximal mapping of the closure of a perspective function. Finally, the appendices
contain the proofs of the results we presented.

2. Some facts on polynomials

We now collect some properties of polynomials that are well known; as a reference,
we recommend [19].
Fact 2.1. Let f(x) be a nonconstant complex polynomial and let r ∈ C such that
f(r) = 0. Then the multiplicity of r is is the smallest integer k such that the kth
derivative at r is nonzero: f (k−1)(r) = 0 and f (k)(r) 6= 0. When k = 1, 2, or 3, then
we say that r is a simple, double, or triple root, respectively.

Fact 2.2. (Vieta) Suppose f(x) = ax3 + bx2 + cx + d is a cubic polynomial (i.e.,
a 6= 0) with complex coefficients. If r1, r2, r3 denote the (possibly repeated and
complex) roots of f , then

r1 + r2 + r3 = − b

a
(1a)

r1r2 + r1r3 + r2r3 =
c

a
(1b)

r1r2r3 = −d

a
. (1c)

Conversely, if r1, r2, r3 in C satisfy (1), then they are the (possibly repeated) roots
of f .

Fact 2.3. Suppose f(x) = ax3+bx2+cx+d is a cubic polynomial (i.e., a 6= 0) with
real coefficients. Then f has three (possibly complex) roots (counting multiplicity).
More precisely, exactly one of the following holds:
(i) f has exactly one real root which either is simple (and the two remaining roots

are nonreal simple roots and conjugate to each other) or is a triple root.
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(ii) f has exactly two distinct real roots: one is simple and the other double.
(iii) f has exactly three distinct simple real roots.

Remark 2.4. We mention that the roots of a polynomial of a fixed degree depend
continuously on the coefficients – see [19, Theorem 1.3.1] for a precise statement and
also the other results in [19, Section 1.3].

3. The depressed cubic

In this section, we study the depressed cubic

g(z) := z3 + pz + q, where p ∈ R and q ∈ R. (2)

For the reader’s convenience, we relegate the proofs to the appendix.

Theorem 3.1. Because
g′(z) = 3z2 + p and g′′(z) = 6z, (3)

we see that 0 is the only inflection point of g: g is strictly concave on R− and g is
strictly convex on R+.
Moreover, exactly one of the following cases occurs:
(i) p < 0: Set z± := ±

√
−p/3. Then z− < z+, z± are two distinct simple roots

of g′, g is strictly increasing on ]−∞, z−], g is strictly decreasing on [z−, z+],
g is strictly increasing on [z+,+∞[. Moreover,

g(z−)g(z+) = 4∆, where ∆ := (p/3)3 + (q/2)2, (4)

and this case trifurcates further as follows:
(a) ∆ > 0: Then g has exactly one real root r. It is simple and given by

r := u− + u+, where u± := 3

√
−q

2
±
√
∆. (5)

The two remaining simple nonreal roots are

−1
2
(u− + u+)± i1

2

√
3(u− − u+). (6)

(b) ∆ = 0: If q > 0 (resp. q < 0), then 2z− (resp. 2z+) is a simple real root
while z+ (resp. z−) is a double root. Moreover, these cases can be combined
into 2

3q

p
= 2 3

√
−q

2
is a simple root of g and

−3q

2p
= − 3

√
−q

2
is a double root of g.

(7)

(c) ∆ < 0: Then g has three simple real roots r−, r0, r+ satisfying the relations
r− < z− < r0 < z+ < r+. Indeed, set

θ := arccos
−q/2

(−p/3)3/2
, (8)

2 Observe that this is the case when ∆ → 0+ in (i)(a)
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which lies in ]0, π[, and then define z0, z1, z2 by

zk := 2(−p/3)1/2 cos
(
θ + 2kπ

3

)
. (9)

Then r− = z1, r0 = z2, and r+ = z0.
(ii) p = 0: Then g′ has a double root at 0, and g is strictly increasing on R. The

only real root is
r := (−q)1/3. (10)

If q = 0, then r is a triple root. If q 6= 0, then r is a simple root and the
remaining nonreal simple roots are −1

2
r ± i1

2

√
3r.

(iii) p > 0: Then g′ has no real root, g is strictly increasing on R, and g has exactly
one real root r. It is simple and given by

r := u− + u+, where u± := 3

√
−q

2
±
√
∆ and ∆ := (p/3)3 + (q/2)2. (11)

Once again, the two remaining simple nonreal roots are
−1

2
(u− + u+)± i1

2

√
3(u− − u+). (12)

Proof. See Appendix A.
We now provide a concise version of Theorem 3.1:

Corollary 3.2. (Trichotomy) Set ∆ := (p/3)3 + (q/2)2. Then exactly one of the
following holds:
(i) p = 0 or ∆ > 0: Then g has exactly one real root and it is given by

3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆. (13)

(ii) p < 0 and ∆ = 0: Then g has exactly two real roots which are given by

3q

p
= 2 3

√
−q

2
and −3q

2p
= − 3

√
−q

2
. (14)

(iii) ∆ < 0: Then g has exactly three real roots z0, z1, z2 which are given by

zk := 2(−p/3)1/2 cos
(
θ + 2kπ

3

)
, where θ := arccos

−q/2

(−p/3)3/2
, (15)

and where z1 < z2 < z0.

As an illustration, we present an example that follows immediately from Corollary
3.2 (with −q = p > 0 and thus ∆ > 0):

Example 3.3. Suppose that p > 0. Then

z3 + pz − p (16)

has exactly one real root which is given by

3

√
p

2
+

√(
p

3

)3

+
(
p

2

)2

+
3

√
p

2
−
√(

p

3

)3

+
(
p

2

)2

. (17)
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Remark 3.4. Example 3.3 is immediately useful to derive an explicit formula of a
Bregman proximal mapping whose existence was announced in [7, Proposition 5.1] in
the paper by Bolte, Sabach, Teboulle, and Vaisbourd (see also [12, Proposition 2.8]
in the paper by Godeme, Fadili, Buet, Zerrad, Lequime, and Amra).

4. The general cubic

In this section, we turn to the general cubic

f(x) := ax3 + bx2 + cx+ d, where a, b, c, d are in R and a > 0. (18)

(The case a < 0 is treated similarly.) Note that f ′′(x) = 6ax + 2b has exactly one
zero, namely

x0 :=
−b

3a
. (19)

The change of variables x = z + x0 (20)

leads to the well known depressed cubic

g(z) := z3 + pz + q, where p :=
3ac− b2

3a2
and q :=

27a2d+ 2b3 − 9abc

27a3
(21)

which we reviewed in Section 3. Here ag(z) = f(x) = f(z+x0) so the roots of g are
precisely those of f , translated by x0:

x is a root of f ⇔ x− x0 is a root of g. (22)

So all we need to do is find the roots of g, and then add x0 to them, to obtain the
roots of f . Because the change of variables (20) is linear, multiplicity of the roots
are preserved. Translating some of the results from Theorem 3.1 for g to f gives the
following:
Theorem 4.1. f is strictly concave on ]−∞, x0] and is strictly convex on [x0,+∞[,
where x0 is the unique inflection point of f defined in (19). Recall the definitions of
p, q from (21) and also set

∆ := (p/3)3 + (q/2)2 =
(3ac− b2)3

(9a2)3
+

(27a2d+ 2b3 − 9abc)2

(54a3)2
. (23)

Then exactly one of the following cases occurs:

(i) b2 > 3ac ⇔ p < 0 : Set x± := (−b ±
√
b2 − 3ac)/(3a). Then x± are two

distinct simple roots of f ′, f is strictly increasing on ]−∞, x−], f is strictly
decreasing on [x−, x+], f is strictly increasing on [x+,+∞[. This case trifur-
cates further as follows:
(a) ∆ > 0 : Then f has exactly one real root; moreover, it is simple and

given by
x0 + u− + u+, where u± := 3

√
−q

2
±
√
∆. (24)

The two remaining simple nonreal roots are

x0 − 1
2
(u− + u+)± i1

2

√
3(u− − u+).
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(b) ∆ = 0 : Then f has two distinct real roots: The simple root is

x0 +
3q

p
= x0 + 2 3

√
−q

2
=

4abc− b3 − 9a2d

a(b2 − 3ac)
(25)

and the double root is

x0 −
3q

2p
= x0 − 3

√
−q

2
=

9ad− bc

2(b2 − 3ac)
. (26)

(c) ∆ < 0 : Then f has three simple real roots r−, r0, r+ satisfying the rela-
tions r− < x− < r0 < x+ < r+. Indeed, set

θ := arccos
−q/2

(−p/3)3/2
, (27)

which lies in ]0, π[, and then define y0, y1, y2 by

yk := x0 + 2(−p/3)1/2 cos
(
θ + 2kπ

3

)
. (28)

Then r− = y1, r0 = y2, and r+ = y0.

(ii) b2 = 3ac ⇔ p = 0 : Then f is strictly increasing on R and its only real root is
r := x0 + (−q)1/3. (29)

If q = 0, then r is a triple root. If q 6= 0, then r is a simple root and the
remaining nonreal simple roots are x0 − 1

2
(−q)1/3 ± i1

2

√
3(−q)1/3.

(iii) b2 < 3ac ⇔ p > 0 : Then f is strictly increasing on R, and f has exactly one
real root; moreover, it is simple and given by

x0 + u− + u+, where u± := 3

√
−q

2
±

√
∆. (30)

The two remaining simple nonreal roots are x0− 1
2
(u−+u+)± i1

2

√
3(u−−u+).

Remark 4.2. Of course, descriptions for the roots of the cubic are well known; see,
e.g., [1, Section 3.8.2]. However, none of the works we are aware of provides an
easy-to-use description of the roots and their ordering when real.

Considering the case when a = 1, b = −α, c = 0, and d = −γ, followed by some
simplifications, we obtain the following:

Example 4.3. Let α > 0 and γ > 0. Then

z3 − αz2 − γ (31)

has exactly one real root which is given by

α

3
+

3

√(
α

3

)3

+
γ +

√
δ

2
+

3

√(
α

3

)3

+
γ −

√
δ

2
, where δ := γ2 +

4

27
α3γ > 0. (32)

Remark 4.4. Example 4.3 appears in work by Ahookhosh, Hien, Gillis, and Pa-
trinos on Bregman proximal alternating linearized minimization; see [2, Proof of
Theorem 5.2].
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In turn, Corollary 3.2 turns into

Corollary 4.5. Recall (19) and (21), and set

∆ := (p/3)3 + (q/2)2 =
(3ac− b2)3

(9a2)3
+

(27a2d+ 2b3 − 9abc)2

(54a3)2
(33)

Then exactly one of the following holds:

(i) b2 = 3ac or ∆ > 0 : Then f has exactly one real root and it is given by

x0 +
3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆. (34)

(ii) b2 > 3ac and ∆ = 0 : Then f has exactly two real roots which are given by

x0 +
3q

p
= x0 + 2 3

√
−q

2
and x0 +

−3q

2p
= x0 − 3

√
−q

2
. (35)

(iii) ∆ < 0 : Then f has exactly three real (simple) roots r0, r1, r2, where

rk := x0 + 2(−p/3)1/2 cos
(
θ + 2kπ

3

)
, θ := arccos

−q/2

(−p/3)3/2
, (36)

and r1 < r2 < r0.

5. Convex analysis of the general quartic

In this section, we study the function

h(x) := αx4 + βx3 + γx2 + δx+ ε, where α, β, γ, δ, ε are in R with α 6= 0. (37)

We start by characterizing convexity.

Proposition 5.1. (Convexity) The general quartic (37) is convex if and only if

α > 0 and 8αγ ≥ 3β2. (38)
Proof. See Appendix B.1.

We shall now assume the above characterization of convexity for the remainder of
this section:

h is convex, i.e., α > 0 and 8αγ ≥ 3β2. (39)

We now turn to the the computation of the Fenchel conjugate (see [20, Section 12]).

Proposition 5.2. (Fenchel conjugate) Recall our assumptions (37) and (39). Let
y ∈ R. Then

h∗(y) = yxy − h(xy), (40)
where p := (8αγ − 3β2)/(16α2) ≥ 0, q := (8α2(δ − y) + β3 − 4αβγ)/(32α3),
∆ := (p/3)2 + (q/2)2 ≥ 0, and

xy := − β

4α
+ 3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆. (41)

Proof. See Appendix B.2.
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Next, we compute the proximal mapping (see [18] and also [20, Section 31]).

Proposition 5.3. (Proximal mapping) Recall our assumptions (37) and (39). Let
y ∈ R. Then

Proxh(y) = − β

4α
+ 3

√
−q

2
+
√
∆+ 3

√
−q

2
−

√
∆, (42)

where p :=
4α(1 + 2γ)− 3β2

16α2
, q :=

8α2(δ − y) + β3 − 2αβ(1 + 2γ)

32α3
, (43)

and ∆ := (p/3)3 + (q/2)2 ≥ 0.

Proof. See Appendix B.3.
Example 5.4. Suppose that

h(x) = x4 + x3 + x2 + x+ 1, (44)

and let y ∈ R. Then h is convex and

h∗(y) = yxy − h(xy), where (45a)

xy = −1

4
+

1

2

3

√
y − 5

8
+

√
(y − 5

8
)2 + (5

4
)3 +

1

2

3

√
y − 5

8
−
√

(y − 5

8
)2 + (

5

4
)3. (45b)

Moreover, Proxh(y)

= −1

4
+

1

2

3

√
y − 3

8
+

√
(y − 3

8
)2 + (

3

4
)3 +

1

2

3

√
y − 3

8
−
√

(y − 3

8
)2 + (

3

4
)3. (46)

See Figure 1 for a visualization.

Proof. See Appendix B.4.
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1

1.2
·104

h

−10 −5 0 5 10
−10

−5

0

5

10

h
∗

−10 −5 0 5 10
−10

−5

0

5

10

P
ro
x
h

Figure 1: A visualization of Example 5.4. Depicted are h (left), its conjugate h∗

(middle), and the proximal mapping Proxh (right).

Example 5.5. Suppose that
h(x) = αx4, where α > 0, (47)

and let y ∈ R. Then h∗(y) =
3

4(4α)1/3
y4/3 (48)

and Proxh(y) =
1

2

3

√
y

α
+

√
1 + 27αy2

27α3
+

1

2

3

√
y

α
−
√

1 + 27αy2

27α3
. (49)
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Proof. See Appendix B.5.
Remark 5.6. The Fenchel conjugate formula (48) is known and can also be com-
puted by combining, e.g., [3, Example 13.2(i) with Proposition 13.23(i)]. The prox
formula (49) appears – with a typo though – in [3, Example 24.38(v)]. Finally, for
a Maple3 implementation for quartics, see Lucet’s [17] and also the related papers
[8] and [16] by Borwein and Hamilton and by Lauster, Luke, and Tam, respectively.

6. The proximal mapping of α/x

In this section, we study the convex reciprocal function

h(x) :=

{
α/x, if x > 0;
+∞, if x ≤ 0,

where α > 0. (50)

The Fenchel conjugate h∗, which requires only solving a quadratic equation, is es-
sentially known (e.g., combine [3, Example 13.2(ii) and Proposition 13.23(i)]), and
given by

h∗(y) =

{
−2

√
−αy, if y ≤ 0;

+∞, if y > 0.
(51)

The aim of this section is to explicitly compute Proxh. The result is Proposition 6.1.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(−1.88988, 0.62996)

P
ro
x
h

Figure 2: A visualization of Proposition 6.1 when α = 1.

Proposition 6.1. Suppose that h is given by (50), and let y ∈ R. Now set
y0 := −3 3

√
α/4 ≈ −1.88988 3

√
α. Then we have the following three possibilities:

(i) If y0 < y, then

Proxh(y) =
y

3
+

3

√
α

2
+
(
y

3

)3

+

√
α
(
α

4
+
(
y

3

)3)
+

3

√
α

2
+
(
y

3

)3

−
√
α
(
α

4
+
(
y

3

)3)
.

(ii) If y = y0, then Proxh(y0) =
3
√
α/

3
√
4 ≈ 0.62996 3

√
α.

(iii) If y < y0, then Proxh(y) =
y

3

(
1− 2 cos

(
1

3
arccos

(y/3)3 + α/2

−(y/3)3

))
.

3Unfortunately, the commercial software Maple is not freely available.
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Proof. See Appendix C.

Remark 6.2. Suppose that α=1. Then Proxh was discussed in [9]; however, no ex-
plicit formulae were presented. For a visualization of Proxh in this case, see Figure 2.

7. Projection onto the epigraph of a parabola

In this section, we study the projection onto the epigraph of the function

h : Rn → R : x 7→ α‖x‖2, where α > 0. (52)

Theorem 7.1. Set E := epih ⊆ Rn+1. Let (y, η) ∈ (Rn × R). If (y, η) ∈ E, then
PE(y, η) = (y, η). So we assume that (y, η) ∈ (Rn × R)r E, i.e., α‖y‖2 > η. Set
ν := ‖y‖ ≥ 0,

p := − (2αη − 1)2

12α2
, q :=

(2αη − 1)3 − 27α2ν2

108α3
, (53)

∆ := (p/3)3 + (q/2)2 = (27α2ν2 − 2(2αη − 1)3)ν2/(1728α4), and

x :=


−αη + 1

3α
+

3
√

−q/2 +
√
∆+

3
√
−q/2−

√
∆, if ∆ ≥ 0;

−αη + 1

3α
+

|2αη − 1|
3α

cos
(
1

3
arccos

−q/2

(−p/3)3/2

)
, if ∆ < 0.

(54)

Then PE(y, η) =
(

y

1 + 2αx
, η + x

)
. (55)

See Figure 3 on the next page for an illustration for the case α = 1/2.

Proof. See Appendix D.

8. On the projection of a rectangular hyperbolic paraboloid

In this section, X is a real Hilbert space and we set

S :=
{
(x,y, γ) ∈ X ×X × R

∣∣ 〈x,y〉 = αγ
}
, where α ∈ Rr {0}. (56)

Using the Hilbert product space norm ‖(x,y, γ)‖ :=
√

‖x‖2 + ‖y‖2 + β2γ2, where
β > 0, we are interested in finding the projection onto S. Various cases were
discussed in [4], but 3 were treated only implicitly. Armed with the cubic, we are
now able to treat two of these cases explicitly (the remaining case features a quintic
and remains hard). The first case concerns

PS(z,−z, γ), when z ∈ X r {0} and α(γ − α/β2) < −‖z‖2/4, (57)

while the second case is

PS(z, z, γ), when z ∈ X r {0} and α(γ + α/β2) > ‖z‖2/4. (58)
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Figure 3: A visualization of Theorem 7.1 when n = 1 and α = 1/2. The epigraph is
shown in gray. The V-shaped curve corresponds to ∆ = 0, the dark gray region to
∆ < 0 (where trig functions are used) and the light gray region to ∆ > 0.

8.1. The case when (57) holds

Theorem 8.1. Suppose z ∈ X r {0}, set ζ := ‖z‖ > 0, (59)

and assume that α(γ − α/β2) < −ζ2/4. (60)

Set p := − (α+ β2γ)2

3α2
, q :=

2(α+ β2γ)3

27α3
+

β2ζ2

α2
, (61)

and ∆ := (p/3)3 + (q/2)2 =
β2ζ2

α2

(
β2ζ2

4α2
+

(α+ β2γ)3

27α3

)
. (62)

If ∆ ≥ 0, then set x :=
2α− β2γ

3α
+ 3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆; (63)

and if ∆ < 0, then set

x :=
2α− β2γ

3α
+ δ

2(α+ β2γ)

3α
cos

(
1

3

(
(3 + δ)π + arccos

−q/2

(−p/3)3/2

))
(64a)

where δ := sign(α2 + αβ2γ) ∈ {−1, 0, 1}. (64b)

Then −1 < x < 1 and PS(z,−z, γ) =
(

z

1− x
,

−z

1− x
, γ +

αx

β2

)
. (65)

Proof. See Appendix E.1.
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8.2. The case when (58) holds

Theorem 8.2. Suppose z ∈ X r {0}, set
ζ := ‖z‖ > 0, (66)

and assume that α(γ + α/β2) > ζ2/4. (67)

Set p := − (β2γ − α)2

3α2
, q :=

2(β2γ − α)3

27α3
− β2ζ2

α2
, (68)

and ∆ := (p/3)3 + (q/2)2 =
β2ζ2

α2

(
β2ζ2

4α2
− (β2γ − α)3

27α3

)
. (69)

If ∆ ≥ 0, then set x := −2α+ β2γ

3α
+ 3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆; (70)

and if ∆ < 0, then set

x := −2α+ β2γ

3α
+ δ

2(α− β2γ)

3α
cos

(
1

3

(
(2 + 2δ)π + arccos

−q/2

(−p/3)3/2

))
(71a)

where δ := sign(α2 − αβ2γ) ∈ {−1, 0, 1}. (71b)

Then −1 < x < 1 and PS(z, z, γ) =
(

z

1 + x
,

z

1 + x
, γ +

αx

β2

)
. (72)

Proof. See Appendix E.2.

9. A proximal mapping of a closure of a perspective function

The following completes [3, Example 24.57] which stopped short of providing solu-
tions for the cubic encountered there. For more on perspective functions, we refer
the reader to Combettes’s paper [10].

Example 9.1. Define the function h on Rn × R by

h(y, η) :=


‖y‖2/(2η), if η > 0;
0, if y = 0 and η = 0;
+∞, otherwise.

(73)

Let γ > 0 and (y, η) ∈ Rn × R. Then

Proxγh(y, η) =

(0, 0), if ‖y‖2 + 2γη ≤ 0;((
1− γλ

‖y‖
)
y, η +

γλ2

2

)
, if ‖y‖2 + 2γη > 0,

(74)

where p = 2(η + γ)/γ, ∆ = (p/3)3 + (‖y‖/γ)2, and

λ =


3

√
‖y‖
γ

+
√
∆+ 3

√
‖y‖
γ

−
√
∆, if ∆ ≥ 0;

2(−p/3)1/2 cos
(

1
3 arccos

∥y∥/γ
(−p/3)3/2

)
, if ∆ < 0.

(75)

Proof. See Appendix F.
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Appendices
A. Proof of Theorem 3.1

Except for the formulas for the roots, all statements on g follow from calculus. For
completeness, we include the proofs.
(i)(a): Because ∆ > 0 and g is strictly decreasing on [z−, z+], it follows from (4)
that g has the same sign on [z−, z+] and so g has no root in that interval. Now g is
strictly increasing on ]−∞, z−] and on [z+,+∞[; hence, g has exactly one real root
r and it lies outside [z−, z+]. Note that r must be simple because the roots of g′ are
z∓ and r 6= z∓. Note that u− < u+. Next, u3

−u
3
+ = (q/2)2 −∆ = −(p/3)3 and so

u−u+ = −p/3. (76)

Also, u3
− + u3

+ =
−q

2
−
√
∆+

−q

2
+
√
∆ = −q. (77)

Hence g(r) = r3 + pr + q

= (u− + u+)
3 + p(u− + u+) + q

= u3
− + u3

+ + 3u−u+(u− + u+) + p(u− + u+) + q

=
(
u3
− + u3

+

)
+ (3u−u+ + p)(u− + u+) + q

= −q +
(
3(−p/3) + p

)
(u− + u+) + q (using (76) and (77))

= 0

as claimed. Observe that we only need the properties (76) and (77) about u−, u+ to
conclude that u− + u+ is a root of g. This observation leads us quickly to the two
remaining complex roots: First, denote the primitive 3rd root of unity by ω, i.e.,

ω := exp(2πi/3) = cos(2π/3) + i sin(2π/3) = −1
2
+ i1

2

√
3. (78)

Then ω2 = ω = −1
2
− i1

2

√
3 and ω3 = ω3 = 1. Now set

v− := ωu− and v+ := ω2u+ = ωu+.

Then v−v+(ωu−) = (ω2u+) = ω3u−u+ = u−u+ = −p/3 by (76), and v3− + v3+ =
(ωu−)

3 + (ω2u+)
3 = ω3u3

− + ω6u3
+ = u3

− + u3
+ = −q by (76). Hence

v− + v+ = ωu− + ωu+

=
(
− 1

2
+ i1

2

√
3
)
u− +

(
− 1

2
− i1

2

√
3
)
u+

= −1
2
(u− + u+) + i1

2

√
3(u− − u+)

and its conjugate are the remaining simple complex roots of g.
(i)(b): From (4), it follows that z− or z+ is a root of g. In view of Fact 2.1 and
g′(z−) = g′(z+), it follows that one of z−, z+ is at least a double root, but not both;
moreover, it cannot be a triple root because 0 is the only root of g′′ and z− < 0 < z+.
Hence exactly one of z−, z+ is a double root. To verify the remaining parts, we first
define

r1 :=
3q

p
and r2 :=

−3q

2p
.
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Because ∆ = 0, it follows that 4p3 + 27q2 = 0. Hence

g(r1) = r31 + pr1 + q =
27q3

p3
+

3pq

p
+ q =

27q3

p3
+ 4q =

q

p3

(
27q2 + 4p3

)
= 0

and

g(r2) = r32 + pr2 + q =
−27q3

8p3
+

−3pq

2p
+ q =

−27q3

8p3
− q

2
=

−q

8p3

(
27q2 + 4p3

)
= 0.

The assumption that ∆ = 0 readily yields

p =
−31/3q2/3

22/3
and |q| = 2(−p)3/2

33/2
.

Hence r1 = 3qp−1 = 3q(−1)3−1/3q−2/322/3 = 22/3(−q)1/3

and r2 = −3q2−1p−1 = −3q2−1(−1)3−1/3q−2/322/3 = −2−1/3(−q)1/3

as claimed. If q > 0, then

r1 =
3q

p
=

3 · 2(−p)3/2

33/2p
= −2(−p/3)1/2 = 2z−

and r2 =
−3q

2p
= −1

2

3q

p
= −1

2
r1 = −1

2
2z− = z+.

Similarly, if q < 0, then r1 = 2z+ and r2 = z−.
No matter the sign of q, we have r2 ∈ {z−, z+} and thus g′(r2) = 0, i.e., r2 is the
double root.
(i)(c): In view of (4), g(z−) and g(z+) have opposite signs. Because g is strictly
decreasing on [z−, z+], it follows that g(z−) > 0 > g(z+). Hence there is at least on
real root r0 in ]z−, z+[. On the other hand, g is strictly increasing on ]−∞, z−] and
on [z+,+∞[ which yields further roots r− and r+ as announced. Having now three
real roots, they must all be simple.
Next, note that

∆ < 0 ⇔ 0 ≤ (q/2)2 < −(p/3)3 = (−p/3)3 ⇔ 0 ≤ (q/2)2/(−p/3)3 < 1

⇔ 0 ≤ (|q|/2)/(−p/3)3/2 < 1 ⇔ −1 < (−q/2)/(−p/3)3/2 < 1.

It follows that θ = arccos
−q/2

(−p/3)3/2
∈ ]0, π[ (79)

as claimed. For convenience, we set, for k ∈ {0, 1, 2},

θk :=
θ + 2kπ

3
; hence, zk = 2(−p/3)1/2 cos(θk). (80)

Recall that 0 < θ < π, which allows us to draw three conclusions:

0 < θ0 = θ/3 < π/3 ⇒ 1 > cos(θ0) = cos(θ/3) > 1/2; (81a)
2π/3 < θ1 = (θ+2π)/3 < π ⇒ −1/2 > cos(θ1) = cos((θ+2π)/3) > −1; (81b)

4π/3 < θ2 = (θ+4π)/3 < 5π/3 ⇒ −1/2 < cos(θ2) = cos((θ+2π)/3) < 1/2. (81c)
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Hence cos(θ1) < cos(θ2) < cos(θ0) and thus

z1 < z2 < z0. (82)

All we need to do is to verify that each zk is actually a root of g. To this end,
observe first that the triple-angle formula for the cosine (see, e.g., [1, Formula 4.3.28
on p. 72]) yields

cos3(θk) =
3 cos(θk) + cos(3θk)

4
=

3 cos(θk) + cos(θ + 2kπ)

4
(83a)

=
3 cos(θk) + cos(θ)

4
. (83b)

Then

g(zk) = z3k + pzk + q

= 8(−p/3)3/2 cos3(θk) + p2(−p/3)1/2 cos(θk) + q

= 2(−p/3)3/2
(
3 cos(θk) + cos(θ)

)
+ 2(−p/3)1/2p cos(θk) + q (using (83))

= 2(−p/3)1/2 cos(θk)
(
3(−p/3) + p

)
+ 2(−p/3)3/2 cos(θ) + q

= 2(−p/3)3/2 cos(θ) + q

= 2(−p/3)3/2
−q/2

(−p/3)3/2
+ q (using (79))

= 0,

and this completes the proof for this case.
(ii): If q = 0, then g(z) = z3 so z = 0 is the only root of g and it is of multiplicity
3. Thus we assume that q 6= 0. Then

g(z) = 0 ⇔ z3 + q = 0 ⇔ z3 = −q ⇒ z = (−q)1/3 6= 0.

Because g is strictly increasing on R, r := (−q)1/3 is the only real root of g. Because
g′ has only one real root, namely 0, it follows that g′(r) 6= 0 and so r is a simple
root. Denoting again by ω the primitive 3rd root of unity (see (78)), it is clear that
the remaining complex (simple) roots are ωr and ωr as claimed.
(iii): Note that ∆ ≥ (p/3)3 > 0 because p > 0. The fact that r is a root is shown
exactly as in (i)(a). It is simple because g′ has no real roots, and r is unique because
g is strictly increasing. The complex roots are derived exactly as in (i)(a).
This concludes the proof.

B. Proofs for Section 5

B.1. Proof of Proposition 5.1

Note that h′(x) = 4αx3 + 3βx2 + 2γx+ δ and, also completing the square,

h′′(x) = 12αx2 + 6βx+ 2γ =
3

4
α
(
4x+

β

α

)2

+ 2γ − 3β2

4α
. (84)

Hence h′′ ≥ 0 ⇔ [α > 0 and 2γ ≥ 3β2/(4α)] ⇔ (38). (For further information on
deciding nonnegativity of polynomials, see [6, Section 3.1.3].) This concludes the
proof.
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B.2. Proof of Proposition 5.2
Because h is supercoercive, it follows from [3, Proposition 14.15] that domh∗ = R.
Combining with the differentiability of h, it follows that y ∈ int dom h∗ ⊆ dom ∂h∗ =
ran ∂h = ranh′. However, if h′(x) = y, then h∗(y) = xy − h(x) and we have found
the conjugate. It remains to solve h′(x) = y, i.e.,

4αx3 + 3βx2 + 2γx+ δ − y = 0. (85)
So we set

f(x) := ax3 + bx2 + cx+ d, where a := 4α, b := 3β, c := 2γ, d := δ − y.

To solve (85), i.e., f(x) = 0, we first note that

p =
3ac− b2

3a2
=

3(4α)(2γ)− (3β)2

3(4α)2
=

8αγ − 3β2

16α2
≥ 0,

where the inequality follows from (39). Next,

q =
33a2d+ 2b3 − 32abc

(3a)3
=

3342α2(δ − y) + 2(33β3)− 32(4α)(3β)(2γ)

3343α3

=
8α2(δ − y) + β3 − 4αβγ

32α3

and ∆ = (p/3)3 + (q/2)2 ≥ 0,
where the inequality follows because p ≥ 0. Then −b/(3a) = −β/(4α) and now
Corollary 4.5(i) yields the unique solution of f(x) = 0 as (41). This concludes the
proof.

B.3. Proof of Proposition 5.3
Because h is differentiable and full domain, it follows that Proxh(y) is the unique
solution x of the equation h′(x) + x − y = 0. The proof thus proceeds analogously
to that of Proposition 5.2 – the only difference is we must solve

f(x) := ax3 + bx2 + cx+ d, where a := 4α, b := 3β, c := 2γ + 1, d := δ − y.

(The only difference is that c = 2γ + 1 rather than 2γ due to the additional term
“+x”.) Thus we know a priori that the resulting cubic must have a unique real
solution. We now have

0 <
1

4α
≤ 1

4α
+

8αγ − 3β2

16α2
=

4α(1 + 2γ)− 3β2

16α2
= p =

12α(1 + 2γ)− 9β2

48α2

=
3ac− b2

3a2
,

which is our usual p from discussing roots of the cubic f . Similarly, the q defined here
is the same as the usual q for f(x) (see (21)). Finally, the formula for x = Proxh(y)
now follows from Corollary 4.5(i). This concludes the proof.

B.4. Proof of Example 5.4

Note that h fits the pattern of (37) with α = β = γ = δ = ε = 1. The characteriza-
tion of convexity presented in Proposition 5.1 turns into 1 > 0 and 8 ≥ 3 which are
both obviously true. Hence h is convex.
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To compute the Fenchel conjugate, we apply Proposition 5.2 and get p = 5/16,
q = (5 − 8y)/32 = −(y − 5/8)/4, and ∆ = 53/163 + (y − 5/8)2/82. It follows
−q/2 = (y − 5/8)/8. Hence (41) turns into

xy = −1

4
+

3

√
y − 5/8

8
+

√
(y − 5/8)2

82
+

53

163
+

3

√
y − 5/8

8
−
√

(y − 5/8)2

82
+

53

163

= −1

4
+

3

√
y − 5/8

8
+

√
(y − 5/8)2

82
+

53

82 · 43
+

3

√
y − 5/8

8
−
√

(y − 5/8)2

82
+

53

82 · 43
,

which simplifies to (45a).
To compute Proxh(y), we utilize Proposition 5.3. Obtaining fresh values for p, q, ∆,
we have this time

p = 9/16, q = (3− 8y)/32, ∆ = ((8y − 3)2 + 27)/4096 = ((8y − 3)2 + 33)/642.
Hence −q/2 = (8y − 3)/64 and

√
∆ =

√
(8y − 3)2 + 33/64. It follows that

3

√
−q

2
±

√
∆ =

3

√
8y − 3

64
±

√
(8y − 3)2 + 33

64
=

1

4

3
√
8y − 3±

√
(8y − 3)2 + 33

=
1

2

3

√
y − 3

8
±

√
(y − 3

8
)2 + (

3

4
)3.

This, −β/(4α) = −1/4, and (42) now yields (46). This concludes the proof.

B.5. Proof of Example 5.5

Note that h fits the pattern of (37) with β = γ = δ = ε = 0. The characterization
of convexity presented in Proposition 5.1 turns into α > 0 and 0 ≥ 0 which are both
obviously true. Hence h is convex.
We start by computing the Fenchel conjugate of h using Proposition 5.2. We have
p = 0, q = −y/(4α), ∆ = (y/(8α))2, and −β/(4α) = 0. Hence −q/2 = y/(8α) and√
∆ = |y|/(8α) which imply

3

√
(−q/2)±

√
∆ = 3

√
y/(8α)± |y|/(8α) = 3

√
max{0, y/(4α)} or 3

√
min{0, y/(4α)}.

Using (41), we get

xy =
3
√
max{0, y/(4α)}+ 3

√
min{0, y/(4α)} = 3

√
y/(4α).

Using Proposition 5.2, we obtain

h∗(y) = yxy − h(xy) = yy1/3/(4α)1/3 − αy4/3/(4α)4/3

=
|y|4/3

41/3α1/3
− |y|4/3

44/3α1/3
=

|y|4/3

41/3α1/3

(
1− 1

4

)
=

3|y|4/3

4(4α)1/3

as claimed.
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To compute Proxh(y), we utilize Proposition 5.3. Obtain fresh values of p, q,∆, we
have this time p = 1/(4α) > 0 and q = −y/(4α) (see (43)). Hence
∆ = (p/3)3 + (q/2)2 = (1 + 27αy2)/(1728α3) and

√
∆ =

√
1 + 27αy2/(8(3α)3/2).

Now −β/(4α) = 0 and −q/2 = y/(8α), so (42) yields

Proxh(y) =
3

√
y

8α
+

√
1 + 27αy2

8(3α)3/2
+ 3

√
y

8α
−

√
1 + 27αy2

8(3α)3/2

=
1

2

3

√
y

α
+

√
1 + 27αy2

27α3
+

1

2

3

√
y

α
−
√

1 + 27αy2

27α3

and this concludes the proof.

C. Proof of Proposition 6.1

Because we have domh = R++, we must find the positive solution of the equation
h′(x) + x− y = 0. Since h′(x) = −αx−2, we are looking for the (necessarily unique)
positive solution of x2(h′(x) + x− y) = 0, i.e., of

x3 − yx2 − α = 0.

This fits the pattern of (18) in Section 4, with parameters a = 1, b = −y, c = 0,
and d = −α. As in (21), we set

p :=
3ac− b2

3a2
= −y2

3

{
< 0, if y 6= 0;
= 0, if y = 0

(86)

and q :=
27a2d+ 2b3 − 9abc

27a3
= −α− 2(y/3)3.

Next, ∆ = (p/3)3 + (q/2)2 = −y6/93 + (α + 2(y/3)3)2/4

= −(y/3)6 + α2/4 + α(y/3)3 + (y/3)6

= α
(
α/4 + (y/3)3

)
.

Hence ∆


< 0 ⇔ y < y0;

= 0 ⇔ y = y0;

> 0 ⇔ y > y0,

where y0 := − 3
3
√
4

3
√
α ≈ −1.88988 3

√
α. (87)

Now set x0 := − b

3a
=

y

3
. (88)

Note that − q/2 = (y/3)3 + α/2. (89)
We now discuss the three possibilities from Corollary 4.5 – these will correspond to
the three items of the result!
Case 1: b2 = 3ac or ∆ > 0; equivalently, y = 0 or y > y0; equivalently, y0 < y.
Then Corollary 4.5(i) yields, as claimed,

Proxh(y) = x0 +
3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆

=
y

3
+

3

√
α

2
+
(
y

3

)3

+

√
α
(
α

4
+
(
y

3

)3)
+

3

√
α

2
+
(
y

3

)3

−
√
α
(
α

4
+
(
y

3

)3)
.
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Case 2: ∆ = 0; equivalently, y = y0.
Then Corollary 4.5(ii) yields two distinct real roots. We can take a short cut here,
though: By exploiting the continuity of Proxh at y0 via Proxh(y0) = limy→y+0

Proxh(y),
we get

Proxh(y0) =
y0
3
+ 2

3

√
α

2
+
(
y0
3

)3

= 3
√
α/

3
√
4 ≈ 0.62996 3

√
α.

Case 3: ∆ < 0; equivalently, y < y0.
By uniqueness of Proxh(y), the desired root must be the largest (and the only posi-
tive) real root offered in this case (see Corollary 4.5(iii)):

Proxh(y) = x0 + 2(−p/3)1/2 cos
(
θ

3

)
, where θ := arccos

−q/2

(−p/3)3/2
, (90)

By (86), −p/3 = y2/9; thus, using y < y0 < 0, we obtain (−p/3)1/2 = −y/3,
(−p/3)3/2 = −(y/3)3, and (89) yields −(q/2)/(−p/3)3/2 = −((y/3)3 + α/2)/(y/3)3.
This and (88) results in

Proxh(y) =
y

3
− 2

y

3
cos

(
θ

3

)
, where θ := arccos

(
− (y/3)3 + α/2

(y/3)3

)
. (91)

The proof is complete.

D. Proof of Theorem 7.1

For x ≥ 0, we have xh = xα‖ · ‖2, x∇h = 2αx Id, Id+x∇h = (1 + 2αx) Id and
therefore Proxxh = (1 + 2αx)−1 Id. In view of [5, Theorem 6.36], we must first find
a positive root x of φ(x) := h(Proxxh(y))− x− η = α‖y‖2/(1 + 2αx)2 − x− η = 0.
Note that φ(0) > 0, that φ is strictly decreasing on R+, and that φ(x) → −∞ as
x → +∞. Hence φ has exactly one positive root. Multiplying by (1 + 2αx)2 > 0,
where x > 0, results in the cubic αν2 − (x + η)(1 + 2αx)2 = 0, which must have
exactly one positive root. Re-arranging, we are led to

f(x) := 4α2x3 + 4α(αη + 1)x2 + (4αη + 1)x+ η − αν2 = 0, (92)

a cubic which we know has exactly one positive root. As in Section 4, we set

a := 4α2, b := 4α(αη + 1), c := 4αη + 1, d := η − αν2 < 0, (93)

p :=
3ac− b2

3a2
= − (2αη − 1)2

12α2
≤ 0, (94)

and q :=
27a2d+ 2b3 − 9abc

27a3
=

8α3η3 − 12α2η2 + 6αη − 27α2ν2 − 1

108α3
. (95)

We then have, as claimed,

∆ := (p/3)3 + (q/2)2 =

(
8α3η3 − 12α2η2 + 6αη − 27α2ν2 − 1

)2 − (2αη − 1)6

(6α)6
(96a)

= − ν2

1728α4

(
16α3η3 − 24α2η2 + 12αη − 27α2ν2 − 2

)
(96b)

=
ν2

1728α4

(
27α2ν2 − 2(2αη − 1)3

)
, . (96c)
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Utilizing Corollary 4.5, we have

x = −αη + 1

3α
+

3
√

−q/2 +
√
∆+

3
√

−q/2−
√
∆, if ∆ ≥ 0 (97a)

and
x = −αη + 1

3α
+

|2αη − 1|
3α

cos
(
1

3
arccos

−q/2

(−p/3)3/2

)
if ∆ < 0. (97b)

(Because we know there is exactly one positive root, it is clear that we must pick r0
in Corollary 4.5(iii) when ∆ < 0.) Finally, [5, Theorem 6.36] yields

PE(y, η) =
(
Proxxh(y), η + x

)
=

(
y

1 + 2αx
, η + x

)
(98)

as claimed.

E. Proofs for Section 8

E.1. Proof of Theorem 8.1

By [4, Theorem 4.1(ii)(a)], there exists a unique x ∈ ]−1, 1[ such that

2ζ2

(1− x)2
+

2α2x

β2
+ 2αγ = 0; (99)

multiplying by β2(1− x)2/2 > 0 yields the cubic

f(x) := ax3 + bx2 + cx+ d = 0 (100)

where

a := α2 > 0, b := αβ2γ − 2α2, c := α2 − 2αβ2γ, d := αβ2γ + β2ζ2. (101)

Our strategy is to systematically discuss all cases of Theorem 4.1 and then combine
cases as much as possible. As usual, we set

x0 := − b

3a
=

2α−β2γ

3α
=

2α2−αβ2γ

3α2
and p :=

3ac− b2

3a2
= − (α+ β2γ)2

3α2
≤ 0, (102)

and we note that the definition of p is consistent with the one given in (61). We
have the characterization

p = 0 ⇔ α + β2γ = 0 ⇔ γ = −α/β2. (103)

Again as usual, we set

q :=
27a2d+ 2b2 − 9abc

27a3
=

2(α+ β2γ)3

27α3
+

β2ζ2

α2
, (104)

which matches (61), and of course

∆ := (p/3)3 + (q/2)2 =
β2ζ2

α2

(
β2ζ2

4α2
+

(α+ β2γ)3

27α3

)
, (105)

which matches (62).
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We now systematically discuss the case of Theorem 4.1.
Case 1: p < 0, i.e., α + β2γ 6= 0 by (61).
Case 1(a): p < 0 and ∆ > 0.
Then Theorem 4.1(i)(a) and the definition x0 in (102) yield (63).
Case 1(b): p < 0 and ∆ = 0.
By Theorem 4.1(i)(b), there are two roots, x0+3q/p and x0− 3q/(2p), one of which
lies in ]−1, 1[. Now

x0 −
3q

2p
− 1 =

2α− β2γ

3α
− 3

2

2(α+ β2γ)3 + 27αβ2ζ2

27α3

−3α2

(α+ β2γ)2
− 1

=
2α− β2γ

3α
+

(α+ β2γ)3 + 27αβ2ζ2/2

3α(α+ β2γ)2
− 1

=

(
(2α− β2γ) + (α+ β2γ)− (3α)

)
3α(α+ β2γ)2

(α + β2γ)2 +
27αβ2ζ2/2

3α(α+ β2γ)2

=
9β2ζ2

2(α+ β2γ)2
≥ 0;

hence the root x0 − 3q/(2p) lies in [1,+∞[ and therefore our desired root is the
remaining one, namely x0 + 3q/p, which also allows us to use the representation
(63).
Case 1(c): p < 0 and ∆ < 0.
According to Theorem 4.1(i)(c), we have three distinct real roots, but there is infor-
mation about their location. We must locate the root in ]−1, 1[. First, b2 − 3ac =
(α2 + αβ2γ)2 which yields

√
b2 − 3ac = |α2 + αβ2γ|. This and the definition of b

yields

x± : =
−b±

√
b2 − 3ac

3a
=

2α2 − αβ2γ ± |α2 + αβ2γ|
3α2

=
1

3α2

(3α2) + (α2 − 2αβ2γ)±
∣∣(3α2)− (α2 − 2αβ2γ)

∣∣
2

.

Hence x− =
min{3α2, α2 − 2αβ2γ}

3α2
<

max{3α2, α2 − 2αβ2γ}
3α2

= x+. (106)

We now bifurcate one last time.
Case 1(c)(+): p < 0, ∆ < 0, and α2 + αβ2γ > 0.
Then 3α2 > α2 − 2αβ2γ and therefore x+ = 1. It follows that our desired root x is
the “middle root” corresponding to k = 2 in Theorem 4.1(i)(c):

x = x0 + 2(−p/3)1/2 cos
(
1

3

(
4π + arccos

−q/2

(−p/3)3/2

))
=

2α− β2γ

3α
+

2|α+ β2γ|
3|α|

cos
(
1

3

(
4π + arccos

−q/2

(−p/3)3/2

))
=

2α− β2γ

3α
+

2(α+ β2γ)

3α
cos

(
1

3

(
4π + arccos

−q/2

(−p/3)3/2

))
,

where in the last line we used the assumption to deduce that

|α + β2γ|/|α| = |α2 + αβ2γ|/α2 = (α2 + αβ2γ)/α2 = (α + β2γ)/α.
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Case 1(c)(−): p < 0, ∆ < 0, and α2 + αβ2γ ≤ 0.
Then 3α2 ≤ α2 − 2αβ2γ and therefore x− = 1. It follows that our desired root is
the “smallest root” corresponding to k = 1 in Theorem 4.1(i)(c):

x = x0 + 2(−p/3)1/2 cos
(
1

3

(
2π + arccos

−q/2

(−p/3)3/2

))
=

2α− β2γ

3α
+

2|α + β2γ|
3|α|

cos
(
1

3

(
2π + arccos

−q/2

(−p/3)3/2

))
=

2α− β2γ

3α
− 2(α+ β2γ)

3α
cos

(
1

3

(
2π + arccos

−q/2

(−p/3)3/2

))
,

where in the last line we used the assumption to deduce that
|α + β2γ|/|α| = |α2 + αβ2γ|/α2 = −(α2 + αβ2γ)/α2 = −(α + β2γ)/α.

Note that the last two cases can be combined to obtain (64).
Case 2: p = 0, i.e., α + β2γ = 0 by (61).
Then ∆ = (q/2)2 ≥ 0; hence,

√
∆ = |q|/2 and thus {−q/2 ±

√
∆} = {−q, 0}. By

Theorem 4.1(ii), the only real root is
x0 + (−q)1/3 = x0 + (−q/2 +

√
∆)1/3 + (−q/2−

√
∆)1/3

which is the same as (63) using (102).
Case 3: p > 0. In view of (61), this case never occurs and we are done.

E.2. Proof of Theorem 8.2

By [4, Theorem 4.1(iii)(a)], there exists a unique x ∈ ]−1, 1[ such that

2ζ2

(1 + x)2
− 2α2x

β2
− 2αγ = 0; (107)

multiplying by −β2(1 + x)2/2 < 0 yields the cubic

f(x) := ax3 + bx2 + cx+ d = 0, where (108)

a := α2 > 0, b := αβ2γ + 2α2, c := α2 + 2αβ2γ, d := αβ2γ − β2ζ2. (109)

Our strategy is to systematically discuss all cases of Theorem 4.1 and then combine
cases as much as possible. As usual, we set

x0 := − b

3a
= −2α+β2γ

3α
= −2α2+αβ2γ

3α2
and p :=

3ac−b2

3a2
= − (β2γ−α)2

3α2
≤ 0, (110)

and we note that the definition of p is consistent with the one given in (68). We
have the characterization

p = 0 ⇔ β2γ − α = 0 ⇔ γ = α/β2. (111)

Again as usual, we set

q :=
27a2d+ 2b2 − 9abc

27a3
=

2(β2γ − α)3

27α3
− β2ζ2

α2
, (112)
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which matches (68), and of course

∆ := (p/3)3 + (q/2)2 =
β2ζ2

α2

(
β2ζ2

4α2
− (β2γ − α)3

27α3

)
, (113)

which matches (69).
We now systematically discuss the case of Theorem 4.1.

Case 1: p < 0, i.e., β2γ − α 6= 0 by (68).

Case 1(a): p < 0 and ∆ > 0.
Then Theorem 4.1(i)(a) and the definition of x0 in (110) yield (70).

Case 1(b): p < 0 and ∆ = 0.
By Theorem 4.1(i)(b), there are two roots, x0+3q/p and x0− 3q/(2p), one of which
lies in ]−1, 1[. Now

x0 −
3q

2p
+ 1 = −2α+ β2γ

3α
− 3

2

2(β2γ − α)3 − 27αβ2ζ2

27α3

−3α2

(β2γ − α)2
+ 1

= −2α+ β2γ

3α
+

(β2γ − α)3 − 27αβ2ζ2/2

3α(β2γ − α)2
+ 1

=

(
(−2α− β2γ) + (β2γ − α) + (3α)

)
3α(β2γ − α)2

(β2γ − α)2 − 27αβ2ζ2/2

3α(β2γ − α)2

= − 9β2ζ2

2(β2γ − α)2
≤ 0;

hence the root x0 − 3q/(2p) lies in ]−∞,−1] and therefore our desired root is the
remaining one, namely x0 + 3q/p, which also allows us to use the representation
(70).

Case 1(c): p < 0 and ∆ < 0.
According to Theorem 4.1(i)(c), we have three distinct real roots, but there is infor-
mation about their location. We must locate the root in ]−1, 1[. First, b2 − 3ac =
(α2 − αβ2γ)2 which yields

√
b2 − 3ac = |α2 − αβ2γ|. This and the definition of b

yields

x± : =
−b±

√
b2 − 3ac

3a
=

−2α2 − αβ2γ ± |α2 − αβ2γ|
3α2

=
1

3α2

(−3α2) + (−α2 − 2αβ2γ)±
∣∣(−3α2)− (−α2 − 2αβ2γ)

∣∣
2

.

Hence x− =
min{−3α2,−α2 − 2αβ2γ}

3α2
<

max{−3α2,−α2 − 2αβ2γ}
3α2

= x+. (114)

We now bifurcate one last time.
Case 1(c)(+): p < 0, ∆ < 0, and α2 − αβ2γ > 0.
Then −3α2 < −α2 − 2αβ2γ and therefore x− = −1. It follows that our desired root
x is the “middle root” corresponding to k = 2 in Theorem 4.1(i)(c):
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x = x0 + 2(−p/3)1/2 cos
(
1

3

(
4π + arccos

−q/2

(−p/3)3/2

))
= −2α+ β2γ

3α
+

2|β2γ − α|
3|α|

cos
(
1

3

(
4π + arccos

−q/2

(−p/3)3/2

))
= −2α+ β2γ

3α
+

2(α− β2γ)

3α
cos

(
1

3

(
4π + arccos

−q/2

(−p/3)3/2

))
,

where in the last line we used the assumption to deduce that
|β2γ − α|/|α| = |αβ2γ − α2|/α2 = (α2 − αβ2γ)/α2 = (α− β2γ)/α.

Case 1(c)(−): p < 0, ∆ < 0, and α2 − αβ2γ ≤ 0.
Then −3α2 ≥ −α2 − 2αβ2γ and therefore x+ = −1. It follows that our desired root
is the “largest root” corresponding to k = 0 in Theorem 4.1(i)(c):

x = x0 + 2(−p/3)1/2 cos
(
1

3

(
arccos

−q/2

(−p/3)3/2

))
= −2α+ β2γ

3α
+

2|β2γ − α|
3|α|

cos
(
1

3

(
arccos

−q/2

(−p/3)3/2

))
= −2α+ β2γ

3α
+

2(β2γ − α)

3α
cos

(
1

3

(
arccos

−q/2

(−p/3)3/2

))
,

where in the last line we used the assumption to deduce that
|β2γ − α|/|α| = |αβ2γ − α2|/α2 = (αβ2γ − α2)/α2 = (β2γ − α)/α.

Note that the last two cases can be combined to obtain (71a).
Case 2: p = 0, i.e., α− β2γ = 0 by (68).
Then ∆ = (q/2)2 ≥ 0; hence,

√
∆ = |q|/2 and thus {−q/2 ±

√
∆} = {−q, 0}. By

Theorem 4.1(ii), the only real root is
x0 + (−q)1/3 = x0 + (−q/2 +

√
∆)1/3 + (−q/2−

√
∆)1/3

which is the same as (70) using (110).
Case 3: p > 0. In view of (68), this case never occurs and we are done.

F. Proof of Example 9.1

The first cases were already provided in Example 24.57 of [3].
Now assume ‖y‖2 + 2γη > 0. It was also observed in this Example 24.57 that if
y = 0, we then have Proxγh(y, η) = (0, η).
So assume also that y 6= 0. It follows from the discussion that in [3, Example 24.57]
that λ is the unique positive solution of the already depressed cubic

λ3 +
2(η + γ)

γ
λ− 2‖y‖

γ
= 0, (115)

which is where the discussion in [3] halted. Continuing here, we set

p :=
2(η + γ)

γ
, q := −2‖y‖

γ
< 0, (116)

and ∆ := (p/3)3 + (q/2)2.
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Using Corollary 3.2, we see that if ∆ < 0, then

λ = 2(−p/3)1/2 cos
(
1

3
arccos

−q/2

(−p/3)3/2

)
(117)

while if ∆ ≥ 0, then

λ = 3

√
−q

2
+
√
∆+ 3

√
−q

2
−
√
∆ (118)

which slightly simplifies to the expression provided in (75).
Finally, notice that if y = 0, then the assumption that ‖y‖2 + 2γη > 0 yields η > 0;
thus, p > 0, q = 0, and hence ∆ > 0. Formally, our λ then simplifies to 0 which
conveniently allows us to combine this case with the case y 6= 0. The proof is
complete.
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