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Abstract

In R3, a hyperbolic paraboloid is a classical saddle-shaped quadric surface. Re-
cently, Elser has modeled problems arising in Deep Learning using rectangular hy-
perbolic paraboloids in R”. Motivated by his work, we provide a rigorous analysis of
the associated projection. In some cases, finding this projection amounts to finding a
certain root of a quintic or cubic polynomial. We also observe when the projection is
not a singleton and point out connections to graphical and set convergence.
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1 Introduction

Throughout this paper, we assume that

X is a real Hilbert space with an inner product (-,-) : X x X = R,
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and induced norm || - ||, and that « € R \. {0} and B > 0. Define the B-weighted norm on
the product space X x X x R by

(V(x,y,7) € X x X x R) [[ (6,2 := \/IIxll? + [y ]2 + B2l 2

Now define the set

Co:={(x,y,7) XX X xR | (x,y) = ay}. (1)

The set C, is a special bilinear constraint set in optimization, and it corresponds to a
rectangular (a.k.a. orthogonal) hyperbolic paraboloid in geometry [8]. Motivated by Deep
Learning, Elser recently presented in [6] a formula for the projection Pc, (xo,Y0,70) when
xp # tyo. However, complete mathematical justifications were not presented, and the
case when xy = £yp was not considered. The goal of this paper is to provide a complete
analysis of Pc, that is applicable to all possible cases.

The paper is organized as follows. We collect auxiliary results in Section 2. Our main
result is proved in Section 3 which also contains a numerical illustration. The formula for
the projection onto the set C, is presented in Section 4.

As usual, the distance function and projection mapping associated to C, are de-

noted by dc,(x0,y0,70) = inf(yy,)ec, [(x,y,7) — (x0,y0,70)[| and Pc,(x0,y0,70) =
argmin ., .jcc, | (x,y,7) — (x0,¥0,70)||, respectively. We say that x,xy € X are conically
dependent if there exists s > 0 such that x = sx( or xyg = sx.

2 Auxiliary results

We start with some elementary properties of C,, and justify the existence of projections
onto these sets.

Proposition 2.1. The following hold:

(i) The set C, is closed. If X is infinite-dimensional, then C, is not weakly closed; in
——weak

fact, Cy =Xx XxR.
(ii) Cy is prox-regular in X x X x R. Hence, for every point in (xg,Yo,70) € Ca, there
exists a neighborhood such that the projection mapping Pc, is single-valued.

Proof. (i): Clearly, Cy is closed. Thus assume that X is infinite-dimensional. By [3, Propo-
k
sition 2.1], forevery v € R, {(x,y) € X x X| (x,y) =a7} =X x X. Thus,

x{7})

XxXxR= | (((oy) eXx X (xy) =ar}"™
YR



k
C{xy 1) eXXXXR| (x,y) =ay} ~CXxXxR.

(ii): Set F: X x X x R = R: (x,y,7) — (x,y) —a7. Then C, = F~(0) and VF(x,y,7) =
(y,x,—a) = (0,0,0) because « = 0. The prox-regularity of C, now follows from [9, Exam-
ple 6.8] when X = IR” or from [4, Proposition 2.4] in the general case. Finally, the single-
valuedness of the projection locally around every point in C, follows from [4, Proposi-
tion 4.4]. [

To study the projection onto C,, it is convenient to introduce
Cy = {(u,0,7) €X><X><1R| ||u||2—||v||2:2tx'y}, (2)

which is the standard form of a rectangular hyperbolic paraboloid. Define a linear oper-
ator A: X x X x R — X x X x R by sending (1,v,7) to (x,y,7), where
_u—-v u+o

= d = .
x\/zany\/E

In terms of block matrix notation, we have

1 1 1 1
X »ld -5 1d 0] 1y u »ld sld 0] Ty
y| = \%Id %Id 0l |v| e |v|= —\/Lild %Id 01|y
v 0 0 1LY v 0 0o 1| L7

Thus, we may and do identify A with its block matrix representation

1 1
?Id —fﬁId 0
0 0 1

and we denote the adjoint of A by AT. Note that A corresponds to a rotation by /4
about the y-axis. The relationship between C, and C, is summarized as follows.

Proposition 2.2. The following hold:

(i) Ais a surjective isometry (i.e., a unitary operator): AAT = ATA = Id.
(ii) ACy = Cyand Cy = ATC,.
(iii) Pc, = APs AT.

Proof. 1t is straightforward to verify (i) and (ii). To show (iii), let (xo,y0,70) € X X X x R.
In view of (i) and (ii), we have (x,y,7) € Pc,(x0,Y0,70) if and only if (x,y,v) € Cy and
1(x,y,7v) = (x0,y0,70) || = dc, (x0,v0,70) = d 4 _(x0,¥0,70) = d& (AT[x0,y0,70]"),
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and this is equivalent to
IAT[x,y,7]T — AT[x0,y0, 70|l = d& (AT[x0,y0,70]")-

Since AT[x,y,7]T € C,, this gives AT[x,y,7|T € Pz (AT[x0,y0,70]7), ie., [x,y,7]T
APz (AT[x0,Y0,70]T). The converse inclusion is proved similarly. |

Exploiting the structure of @( is crucial for showing the existence of P@ (ug,v0,70) for
every (uo,TJo,’)/o) e X x X xRR.

Proposition 2.3. (existence of the projection) Let (ug,vg,70) € X X X x R. Then the
minimization problem

minimize  f(1,0,7) == |u — uo|* + [0 — vol|* + By — 70/ (3a)
subject to  h(u,v,7) := |Jul|* — ||v]|* — 20y =0 (3b)

always has a solution, i.e., P@(uo,vo,'yo) =@, If (u,0,7) € Péa(uo,vo,'m), then u,u( are
conically dependent, and v, v, are also conically dependent.

Proof. We only illustrate the case when ug = 0,vg # 0, since the other cases are similar. We
claim that the optimization problem is essentially 3-dimensional. To this end, we expand

£(u,0,7) = [[ul]? = 2w, u0) + ol + 012 — 2 (0,00) + o2 +£27 — 10l (@)

~\~

The constraint
h(u,0,7) = |[ul]* = [[0]|* — 22y =0

means that for the variables u,v only the norms ||u|| and ||v|| matter. With ||u|| fixed, the
Cauchy-Schwarz inequality in Hilbert space (see, e.g., [7]), shows that —2 (u, 1) in the left
underbraced part of (4) will be smallest when u, 1 are conically dependent. Similarly, for
fixed ||v||, the second underlined part in f will be smaller when v = tv for some ¢ > 0. It
follows that the optimization problem given by (3) is equivalent to

minimize  g(s,t,7) := (1 —35)[[ug||* + (1 — £)*[[vo|* + B[ — 70| (5a)
subject to  ¢1(s,t,7) := s*||ug||* — t*||vo]|* —2ay =0, s>0,t>0,7 € R. (5b)

Because ¢ is continuous and coercive, and g is continuous, we conclude that the opti-
mization problem (5) has a solution. |

Next, we provide a result on set convergence and review graphical convergence, see,
e.g., [1,9]. We shall need the cross

C:={(xy) e XxX| (x,y) =0}, (6)
which was studied in, e.g., [2], as well as

={(n,v) e X x X | |u]|? = ||o||? =0}. (7)
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Proposition 2.4. The following hold:

(i) limy_0Cy =C X R.
(ii) limy_oCs = C X R.

Proof. (i): First we show that limsup,_,, C, CCxR. Let (Up,Va,va) — (u,0,7) and
(s, 0a,7a) € Cq with & — 0. Then ||uy]|? — ||va]|? = 2a7, gives |ul|?
a—0,s0 (u,v,7) € CxR.

— ||]|*> = 0 when

Next we show C x R C liminf,_,oC,. Let (1,0,7) € C x R, i.e., |Ju||? — ||v||2 = 0 and
v € R. Let ¢ > 0. We consider three cases:

Case 1: v = 0. Then (uy,v,,0) = (u,0,0) € C, for every a.
Case 2: ¢ = 0 but (u,0) = (0,0). If ay > 0, take (u,,0,7) with ||u, > — 0 = a-y so that
(14,0,7) € Cy; if ay <0, take (0,0,,7) with 0 — ||va]|?> = a7y so that (0,v,,7) € Cy. Then
(0, 0,7) = (0,0,7) | = [[ual| = y/|ary| <&,

or
100,20, 7) = (0,0, )| = llvall = y/lav| <,
if |a| < €2/ |7
Case 3: vy #0and (u,v) = (0,0). Take « € R such that

2
o < i { L2 WP,
ko ke
and set ay
A= —
[ (u,0)]?
Then | |
oy
AN =——15 <1
| (u,0)]]?
Now set
Ug:=vVI1+Au, v,:=+v1-— Av.
Then

ot = lloa | = (1 + ) [l = (1= A) |0
=Al[ul® + lo|*) = a,



so that (u,,v,,7) € Cy and

(42, 00,7) = (u,0,7)|| = \/(vl +A=12[Jul?+ (V1=A =1)[jo|]?

= [l + lol2

A2 A2
\/(1 +V1+2A)? (14++v1—-2)2
< \/?\Z(HMH2 +0)?) = (Ml (w0) || <e.

(ii): This follows from (i) because that C, = AC, and C x R = A(C x R) and that A is
an isometry. See also [9, Theorem 4.26]. |

Definition 2.5. (graphical limits of mappings) (See [9, Definition 5.32].) For a sequence
of set-valued mappings S¥ : R” = R™, we say S¥ converges graphically to S, in symbols

sk %3, if for every x € R"” one has

| limsupS¥(x¥) CS(x) € |J liminfS*(x").

k—
{xk—x} k=0 {xk—x} 0

Fact 2.6. (Rockafellar-Wets) (See [9, Example 5.35].) For closed subsets sets Sk S of R,
one has P 5 Pgif and only if SF — S.

We are now ready for our main results which we will derive in the next section.

3 Projection onto a rectangular hyperbolic paraboloid

We begin with projections onto rectangular hyperbolic paraboloids. In view of Proposi-
tion 2.2(iii), to find Pc, it suffices to find Pg . That is, for every (ug,v09,70) € X X X X R,
we need to solve:

min - f(u,0,7) = [|lu = uo[|* + o = vo* + By — ol (8a)
subject to  h(u,v,7) := ||ul|* — ||v]|* — 2ay = 0. (8b)

Theorem 3.1. Let (ug,vg,70) € X x X x R. Then the following hold:

(i) When ug #0,vg =0, then

u v Ax
PEN (uOIUOI,YO) - { (H——O)L, ﬁ,’)’o + E) }/ (9)
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where the unique A € |—1,1] solves the following (essentially) quintic equation

_ (A+1)p-21g 2Ma* B
g(A) = 1= 22 2 20y =0, (10)

and where p := ||ug||?> — ||vo||> and g := ||ug||> + ||vo]|?-
(il)) When ug = 0,9y = 0, we have:

(@) If a(yg — %) < — HUO” , then

Pe, (0,00,70) = {(0,1 =0+ 2‘;‘)} a1

for a unique A € |—1,1] that solves the (essentially) cubic equation

oo 2Aa?

gl(/\) = (1 — ) ,32 + 209 = 0. (12)
2
(b) Tf (70 — £) > — 1%, then
. . _ _oxy el
Pz (0,00,70) = {(u %0 52) ' u| = \/2a(70 52> + A uEX
(13)
2
which is a singleton if and only if a(yo — %) =— vau
1ii en ug # 0,99 = 0, we have:
(iii) Wh 0 0, weh
2
(a) T a(yo+ 4) > [#o]” then
_ [ uo
Pcm(l’lO/O/ryO)_{(1_+_)L 0/ 0+ ﬁ2>} (14)
for a unique A € |—1,1] that solves the (essentially) cubic equation
ull> 2742
(A) = (1”_'_0!\)2 - — 279 =0. (15)
(b) T a(yo + %) < 1L then
p
N _ ay | Jluol?
P (10,0,70) = {(2 010+ ' ol = \/ 2e(n0+g5) +g e,
(16)

[EN[&

which is a singleton if and only if a(yo + 52) ==
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(iv) When ug = 0,99 = 0, we have:

a) Ifayy > ”‘—i, then the projection is the non-singleton set
10~ g p10) &

P@(0,0,'yo) = {(u,o,% — %) ' ul| =, /2&(70 - %), ue X} (17)

(b) If |ayo| < &, then
P (0,0,70) = {(0,0,0)}. (18)

(c) fayp < —g—i, then the projection is the non-singleton set

(44

Pz (0,0,70) = {(O,v,')/oJr%) ‘ o] = \/—2a<ryo+ ﬁz>,vEX}. (19)

Proof. Observe that V f(u,v,7) = (2(u — ug),2(v — v9),2B*(7 — Y0)) and Vh(u,v,7) =
(2u, —2v,—2«). Since a # 0, we have V(u,v,7) € X x X x R, Vh(u,v,7v) = 0. Using [5,
Proposition 4.1.1], we obtain the following KKT optimality conditions of (8):

(14 A)u = ug (20a)
(1-ANov=1g (20b)

B*(v —10) — Aa =0 (20¢)
[u]|* = ||o]|* — 20y =0 (20d)

where A € R is the Lagrange multiplier.

The proofs of (i)—(iv) are presented in Section 3.1-Section 3.4 below.

3.1 Case (i): ug=0,v920

Proof. Because ugy # 0,09 # 0, we obtain A = £1. Solving (20a), (20b) and (20c) gives

— Y — A S :
”—gi—oyv—ﬁand’)’—’m—i—ﬁ—ﬁ‘. By Proposition 2.3,1+A >0and 1 —-A >0, i.e,

A € ]—1,1[. Substituting u and v back into equation (20d), we get the (essentially) quintic
equation (10). Using also p < g and g > 0, we have

2 ) 3 o?
m(—q(l+3/\ )+ p(A°+3A)) —2E
(xz

< ﬁ( —q(1+3A%) +q(A% +31)) — 2E

(VAe]-11)g'(A) =



2g(A—1)3  _a? —2q o2

I e S CEV VRS

<0
hence, g is strictly decreasing. Moreover, g(—1) = 400, ¢(1) = —o0 and g is continuous
on |—1,1[. Thus, g(A) = 0 has unique zero in |—1,1[. [

3.2 Case (ii): ug=0,99 %0

Proof. When 1 = 0, the objective function is

fu,0,9) = [[ul® + o = voll® + B2y — 70l

and the KKT optimality conditions (20) become

(14 A)u=0 (21a)
(1—-A)v=1g (21b)
Aw
Y= + E (21¢)
[l = [[o]|* = 2a. (21d)
Then (21a) gives

1+A=0or u=0. (22)

Because vy # 0, we have 1 — A =0, so that

_ Y

v= T (23)

By Proposition 2.3, A < 1.
Our analysis is divided into the following three situations:

ool

Situation 1: a(yo — %) < -3

In view of (22), we analyze two cases.
Casel:1+A=0,ie,A=—-1.By(23),v= Z’2—°, and then (21d) and (21c) give

I

0 2 14 0
||u||2=20é’)/-|— || 0” :2“(’)/0 >_|_ || 0

1 TR z <0



which is absurd.

Case 2: u = 0. By (21d), —||v||* = 2a1, together with (23) and (21c), we have

2
g21(A) == %—FZ&(W + 52) =0.

, 2l|lwol|> 2
§1(A) = %+ﬁi‘2>o on ]—oo,1[,

€1 is strictly increasing on |—oo,1[. Moreover, g1(1) = +o0 and

21(—1) = 1 —1—204(70— )<0

B2
Because g is strictly increasing and continuous, by the Intermediate Value Theorem, there

exists a unique A € | — 1,1[ such that g;(A) = 0. Hence, the possible optimal solution is
given by

(0.7 2570+ ﬁz) 4)

where g1(A) =0and A € |-1,1].

Combining Case 1 and Case 2, we obtain that (24) is the unique projection.

2
Situation 2: a(yy — %) > —lwl®,

o)

In view of (22), we consider two cases:

Case1:1+A =0,ie, A =—1.By (23),v =2, and then (21d) and (21c) give

2 2
114 (Y

The possible optimal value is attained at

00 0
(50— 5) (25)
with ||u]|? = 2a (v — %) + W such that
2 2
v AN ot ool
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Case 2: u = 0. By (21d), —||v||?> = 2a1, together with (21c), we have

2
g1(A) = —(1”{:0!\) +2a(70+ 52) 0.

2o | 202

gﬂ()\)—ﬁ—f— B >0 on |—oo,1[,

g1 is strictly increasing. Observe that

_ ool &
21(—1) = 1 —|—20c(0—?)>0

and gj(—o0) = —oco. By the Intermediate Value Theorem, there exists a unique A €
]—00, —1] such that g1 (A) = 0 because g7 is strictly increasing and continuous. The possi-
ble optimal value is attained at (recall (23))

(0’1710 ’7°+M)

B
with 20l ) 5
0 Ax\  A%||vg Acw
f<01— +ﬁ2)_(1—/\)2+ pz’ @7)
where A is the unique solution of
__looll? Ay
21(A) .—W—FZ(x('y +,32>_0 in |—oco, —1]. (28)

Because both Case 1 and Case 2 may occur, we have to compare possible optimal ob-
jective function values, namely, (26) and (27). We claim that Case 1 wins, i.e.,

@ ool A¥ooll? | A%
20y9 — ? + > (T— 1) B (29)
In view of (28), we have
o] A
0< W = 2« <')/() + — ‘32 ), and so 06(’)’() + ?> < 0. (30)

To show (29), we shall reformulate it in equivalent forms:

(1= ool o?
(/\2 -— ) e + (1 +)x2)‘82 > 20y,

11



which is )

A% 420 —1 A w
f(—m(%—k?)) + (1+A2)E > 209

by (30). After simplifications, this reduces to

2

%(1 F A1 = A) > (1 +A)>2.
Since A + 1 < 0, this is equivalent to
a? . Aay  a?
E(l —A) > a7y, ie., tx('yo + ?) < X

which obviously holds because of (30) and w?/ ,32 > 0.
Hence, equation (25) of Case 1 gives the optimal solution.

Situation 3: ||2

a(’)f —%) :—va . (31)

We again consider two cases.

Case1l: 1+ A =0,ie, A =—1. By (21b),v = % and then (21d) and (21c) give

2 lvoll® ( 04) lvoll®
-9 L1t | N _ & neon
JulP =20y + 254 = 20 (70— ) + 14 =0

so u = 0. The possible optimal value is attained at

0o 0

(0570 5) (32)
with
% lvoll? | o

£(0, 570 %) =% T

Case 2: u = 0. By (21d), —||v||?> = 2a1, together with (21c), we have

_llwol? Ay
By (31), oo )
$2(—1)= 1 +2“<’Yo—?) =0



, 2l|lvol|> | 242
B = Gl + 2

g» is strictly increasing and continuous on |—oo,1], so A = —1 is the unique solution in
]—00,1[. Then the possible optimal value is attained at

(020 )

>0 on |—oo,1],

with 2 2
0o oo |

£(0, 570 ,sz) T+E' (33)

Therefore, Case 1 and Case 2 give exactly the same solution. The optimal solution is
given by (32), and it can be recovered by (25), the optimal solution of Situation 2. u

3.3 Case (iii): ug=0,90=0

Proof. The minimization problem now is

minimize f(u,0,7) = |lug — u||* + [[0[* + |0 — v|? (34a)
subject to ||u||* — ||v]|* = 2a1. (34b)
Rewrite it as
minimize f(u,v,7) = |[0]|* + [luo — ul|* + BZ|yo — v|* (35a)
subject to ||o]|? — ||u||* = 2(—a)y. (35b)

Luckily, we can apply Section 3.2 for the point (0,u,70) and parameter —a. More pre-
cisely, when —a(yo — g—;") < — ””‘)H , the optimal solution to (35) is
ug A—a)
0,—=, 70+ —5—"
( -3 B2 >

where §>(A) =0, A € ]-1,1], and

- (3 [[o]|> Aw
82(/\)=ﬁ+2( )(70—E>:0-

||uoH

Put A = —A. Simplifications give: when a(7o + 52) , the optimal solution to (35) is

(0755 m0+ 5) (36)

13



where ¢»(A) =0,A € ]—-1,1], and

§2(A) :==&(=A) = ol —206<7 ) 0.
(1+4)2 B
Switching the first and second components in (36) gives the optimal solution to (34).

)y > — H”gnz, the optimal solution to (35) is

‘32
(o0 3

_ 2
ol = 2(=0) (10— 55 ) + 10

, the optimal solution to (35) is

When —a(yp —

with

That is, when a(yo + %) < H”gnz

< /u »Y0 + ﬁz) (37)

with o]
2 _ Uo
JolP = =2a(v0+ 55) + 75

Switching the first and second components in (37) gives the optimal solution to (34). W

3.4 Case (iv): ug=9v9=0

Proof. The objective function is f(u,v,7) = ||ul|? + ||v||> + B?|7 — 70|?, and the KKT opti-
mality conditions (20) become

(1+A)u=0, (38a)
(1-A)o=0, (38b)

Y =0+ % (380)

] = [[o]|* = 2a. (38d)

We shall consider three cases:
(1) a(yo— ﬁi) > 0; hence, y¢ — % 2 0.
(i) a(yo— ﬁ‘"z) = 0; hence, v — ﬁ =0.

14



(iii) a(yo — %) < 0; hence, y9 — % = 0.

For each item (i)—(iii), we will apply (38):
Case 1: a(yp — %) > 0. By (38a), we have A = —1 or u = 0. We consider two subcases.

Subcase 1: A = —1. Using (38b), (38c) and (38d), we obtainv =0, 7 =y — %, and

Jul* =20 (70 = 55)- (39)

Therefore, the candidate for the solution is (#,0,79 — =) with u given by (39) and its

p

objective function value is

>+0+ﬁ2<_ﬁ—§‘>2:2a%—g—; (40)

o

f(uzoz’Yo - %) =2u <’Yo 2

p

Subcase 2: u = 0. Using (38b)-(38d), we obtain —||v||> = 2ay,v = 70 + % and (1 —

A)v = 0. We have to consider two further cases: 1 — A =0 or v =0.

(i) v=0. We get —(0)2 = 2ay = y = 0 because a = 0. This gives a possible solution
(0,0,0) with function value

£(0,0,0) = fJull? + [[o]I* + B*v — 70|* = B*75. (41)
(ii) A =1. Wehave y =+ % and —||v]|? = 2a(yo + [%) So,0 < ||v]|*> = —2a(y0 + %)
However,
"y (70 n %) - :204(70 _ %)J—%z <0 (42)
<0
because a(yo — %) > 0. This contradiction shows A = 1 does not happen.
We now compare objective function values (40) and (41):
o 2,2 2.2, & A% 2 &2
20670—§</5 Yo < B ’YO+E—206’YO>O<:> <ﬁ70—3> >0 P <7 —?) >0,
which holds because vy — % # 0. Hence, the optimal solution is (#,0,v9 — %) with ||u|| =

B B

20(yo — %) That is,

Pe, 00700 = { (w070~ 53) [ Iull =\ f20(r0 - 53) }
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Case 2: a(yp — %) = 0; hence, v — % =0. By (38a), we have two subcases to consider.

Subcase 1: A = —1. Wehavev =0,y =70 — & =0, |[u]|?> = 2&(70—%) = 0. The possible

solution is (0,0,0).
Subcase 2: u = 0. We have —||v||? = 2ay and ¥ = ¢ + % By (38b), v =0or A = 1. This
requires us to consider two further cases. For v = 0, we get v = 0, which gives a possible

[0]|2 = —2a(y0 + 132) _g”‘ < 0, which

ﬁ

solution (0,0,0). For A =1, we get v = 7o + /%,

is impossible, i.e., A = 1 does not happen.

Both Subcase 1 and Subcase 2 give the same solution (0,0,0). Therefore, we have the

optimal solution is (0,0,0), when a(yo — %) = 0; equivalently, when v = %

Case 3: a(yo — %) < 0. In view of (38a), we have A = —1 or u = 0. We show that A = —1

can’t happen. Indeed, when A = —1, by (38b)—(38c), we have v =0, v = 7o — and

o

E/
0 < ||ul]? = 2ay = 2a(y0 — %) < 0, which is impossible. Therefore, we consider only the
case u = 0. Then (38b)—(38d) yield ||v||?> = —2a7, v = 70 + 2 3, and (1—A)v =0, which

requires us to consider two further cases.
Subcase 1: v = 0. Then v = 0. The possible optimal solution is (0,0,0) and its objective
function value is

£(0,0,0) = Jull> + [[o]I* + B*v — 70|* = B*75. (43)

Subcase 2: A =1. Thenu =0, vy =y + %, and —||v||? = 2« (o + %) We consider three
additional cases based on the sign of a(yo + %)

1) a(yo+ [%) > 0. This case never happens because the relation 0 > —||v||? = 2a(7y +
%) > 0 is absurd.
(i) a(yo+ %) =0. Asa =0, we have 7o + % = 0. This gives y =0,u = 0 and v = 0. So

the possible optimal solution is (0,0,0).
(iii) a(yo+ %) < 0. We have g + % # 0. The possible optimal solution is (0,v, v + %)

with ||| = \/ —2ua(y0 + %) and function value

2

Fo0m0+55) = ~20(10+ 55) +F(5) =m0 @

Both (i) and (ii) imply that (0,0,0) from Subcase 1 is the only optimal solution, when
ocz/,B2 > ayg > —az/ﬁz.

When ayp < —%;, both Subcase 1 and Subcase 2 happen. We have to compare objec-

52’
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tives (43) and (44). We claim f(0,v,v0 + 25 ) < £(0,0,0). Indeed, this is equivalent to

o2

B B >0<=>(,B’)’o+ﬁ

which holds because vy + % # 0. Therefore, the optimal solution is (0,v, o + ﬁ?) with
foll = /2 (r0 + g, i,

Pz (0,0,70) = {(O 9,70 + ‘ o] = \/—2“(’)’0 + %)}

—20y0 — 2<ﬁ 70(:>ﬁ ’yo+2afm+ ) >0<:>ﬁ (’Yo+ﬁ2) >0

when ayg < _ﬁ—"f |
Altogether, Section 3.1-Section 3.4 conclude the proof of Theorem 3.1. u

Let us illustrate Theorem 3.1.

Example 3.2. Suppose that X =R, « =5, and B = 1. Writing z instead of -y, we note that
C, turns into the set

S:={(x,y,z) R’ | x> —y* =10z} = gra((x,y) — 15(x* — ?)).

Let us now compute Ps(xo,1o,20) for various points.

(i) Suppose that (xo,v0,20) = (2,—3,4).
In view of Theorem 3.1(i), we set p := |xo|*> — |yo|*> = 2% — (—3)2 = —5and q :=
1x0]2 + |yo0]? = 22 + (—3)? = 13. Following (10), we consider the equation

(A24+1)p—2Ag 2Aa? 5A2 +26A +5
— — 209 = — — 50\ — 40 =
(1= 12)2 B &yo 1= 2)2 50 0=0

which has A = —0.52416 as its unique (approximate) root in |—1,1[. Using (9) now

yields
B X0 Yo Aw
pS(XOIyO/ZO)_{<1+A 1_ / 0+ ﬁ2>}

= { (4.20311, —1.96830,1.37919) }

This is depicted in Fig. 1 with the green arrow.
(ii) Suppose that (xo,y0,z0) = (0,—3,3).

In view of Theorem 3.1(ii), we evaluate a(zg — [3_) =5(3-5)=-10< —3 = —@
and we are thus in case (ii)(a). In view of (12), we consider the equation
lyol? 2Aa? 9
2 = = A =
(1—A)2+ B + 2uzg (1—)&)2+50 +30=0



(iii)

(iv)

(v)

which has A = —0.66493 as its unique (approximate) root in |—1,1|. Using (11) now
yields

Ps(x0,Y0,20) = { (O’ 1 ZEJ 70+ B? > }
= {(0,-1.80187,~0.32467) }.

This is depicted in Fig. 1 with a single blue arrow.
Suppose that (xo,v0,20) = (0,v/32,6) = (0,5.65685,6).
In view of Theorem 3.1(ii), we evaluate a(zy — %) =56-5)=5>-4=-2=

\yo\ and we are thus in case (ii)(b). We compute

\/2a<zo——>+%—\/10(6—5)+%:\/1_8

and now (13) yields

2 ]x|:\/20c< 52> + |y2|2 uE]R}
= {(£V18,v81) | = { (+424264,282843,1) }.

This is depicted in Fig. 1 with double blue arrows.
Suppose that (xg,10,20) = (0,0,6).

Ps(xo, Yo, 20) = { (x,%,zo - ﬁ)

In view of Theorem 3.1(iv), we have azg = 5(6) = 30 > 25 = g—i and we are thus in
case (iv)(a). We compute

o
, /20((70 - §> = /10(6 — 5) = V10
and now (17) yields

Ps(x0,Y0,20) = { <x,0,zo — %) x| =, /2a (zo — %),u € IR}
= {(£v10,01) } = {(+316228,0,1) }.

This is depicted in Fig. 1 with double black arrows.

Suppose that (x9,10,20) = (0,0,4).

In view of Theorem 3.1(iv), we have |azg| = |5(4)| =20 < 25 =
in case (iv)(b). Therefore,

2
&5 and we are thus

p

Ps(x0,Y0,20) = {(0,0,0) }.
This is depicted in Fig. 1 with a single black arrow.
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\

Figure 1: Visualization of the 5 projections from Example 3.2.
4 Further results

Recall that
Co={(xy,7) EXx X xR| (x,y) =ay},

and this is the representation more natural to use in Deep Learning (see [6]). Armed with
Theorem 3.1, the projection onto C, now readily obtained:

Theorem 4.1. Let (x0,0,70) € X x X X R. Then the following hold:
(i) If xo = £yo, then

XO—/\ 0 0—/\3(0 Aw
PCK(XO/yO/’YO) = {( 1 —A;Z /yl 2 /’)/O ’32>}

for a unique A € |—1,1] that solves the (essentially) quintic equation

A2+ 1)p—20g  2Ma?
8(/\) 3:( a_)iz)z 7 [33

—2ay0 =0,

where p := 2 (xq,y0) and g := ||x0]|> + ||yol|*-
(ii) If yo = —xo =0, then we have the following:

a) When a(7yo — ﬁ2)< on” , then

X —X Aw
PC,X(xO/_xOI,YO) - {( 0/\ 1 _(;U')’O -+ 52>}
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(iii)

(iv)

for a unique A € |—1,1] that solves

2l|xol? , 2Aa?
(1-A)2 " p?

b) When (10 — £) > — 0l* then

g1(A) =

+ 2ay9 = 0.

Pc, (xo, —x0,70) =
Xo U xg U i i || x0l/?
—t+t =5+t =75 =4/2 — = ,ueX
{<2+ﬁ 2+ 5 ﬁz>‘||u|| \/tx(’ro /32>+ S UE

which is a singleton if and only if a(y — %) =13

If yo = xp # 0, then we have the following:
a) When a(yo + &%) > |\x2||2, then

X0 X0 Aw
PC,X(XO;XO/’YO) — {(m’1+A’ 0+ ﬁ2>}

for a unique A € |—1,1] that solves the (essentially) cubic equation

ﬁ2

2|2 202

g2(M) = (1+1)2 B2

—2ay9 = 0.

b) When a(yo + gz) <lx ” , then
Pc, (xo,%0,70) =

X0 v X x | x0]|?
02, 0 = X
{<2 V2 2+\/§,70+ ‘||v|| \/ <70+,32>+ 2 Y¢S

2

1o

which is a singleton if and only if (0 + ) = 3

If xo=y0=0, then we have the following:

a) When ayg > %, then the projection is the non-singleton set

52’

e, 00,10 = { (5 m =55 | Il = fou (0 = 55), we x].

b) When |a7yg| < &, then

182,
PC“ (0,0, ’)’0) = {(0,0,0)}.
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c) When ayg < — g—i, then the projection is the non-singleton set

Pc,(0,0,70) = {<— %/%/%-F%) ' o]l = \/—206(70+ %),U € X}

Proof. With

1 1
?Id —Fld 0
0 0 1

in mind, by Proposition 2.2(iii) we have

Pc, [x0,y0,70]" = APg AT[x0,10,70]"

Xo+Yo —xo+ty , 1T
= APx , , .
C [ V2 V2 }

Hence (i)—(iv) follow by applying Theorem 3.1. [

Remark 4.2. Theorem 4.1(i) was given in [6, Appendix B] without a rigorous mathemati-
cal justification.

It is interesting to ask what happens when a — 0.

Theorem 4.3. Suppose that X = R". Then Pc, 8, Pcyr = Pc x Id and P@ LN Pz g =
Pz x Id when & — 0.

Proof. Apply Proposition 2.4 and Fact 2.6. [ |

Remark 4.4. The projection onto the cross C, Pc, has been given in [2].
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